A strain-compatible method for micromechanical analysis of multi-phase composites

A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear couplin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2000-09, Vol.37 (37), p.5097-5122
Hauptverfasser: Gan, Hewen, Orozco, Carlos E., Herakovich, Carl T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5122
container_issue 37
container_start_page 5097
container_title International journal of solids and structures
container_volume 37
creator Gan, Hewen
Orozco, Carlos E.
Herakovich, Carl T.
description A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear coupling effect, absent in the generalized method of cells. Because of this shear coupling, the method is especially useful when shear effects are important. In the present study, the new method is used to predict the micro-stresses and to model the effective elastic constants of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with those of well-established traditional tools like finite element analysis. A variety of numerical results comparing the accuracy and performance of the new method with those of the generalized method of cells, the finite element method, and the classical Reuss and Voigt approximations is presented.
doi_str_mv 10.1016/S0020-7683(99)00199-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27758086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768399001997</els_id><sourcerecordid>27758086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3e5c7abbed47f12f5910e50f03d83a30b0ebbde522be9b129aaf06721a44e4753</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEHET1UJ_1KcxIRv0AQUc9hmk7YSNusma7gv7frih49zeV55-V9hDiUcCZBVufPABmkqqrzE61PAaTWqdoSM1krnWayqLbF7BfZFXvMbwBQ5Bpm4uky4TGiH1Ib-iWOvuko6WlchDZxISa9tzH0ZBc4eItdggN2n-w5CS7pV93o0-UCmZJ1OrAfiffFjsOO6eDnzsXrzfXL1V368Hh7f3X5kNq8UmOaU2kVNg21hXIyc6WWQCU4yNs6xxwaoKZpqcyyhnQjM43ooFKZxKKgQpX5XBxv_i5jeF8Rj6b3bKnrcKCwYpMpVdZQVxNYbsBpCXMkZ5bR9xg_jQSzFmi-BZq1HaO1-RZo1JQ7-ilAnqa7iIP1_BcuoJw0TtjFBqNp7IenaNh6Giy1PpIdTRv8P0Vfu_CF3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27758086</pqid></control><display><type>article</type><title>A strain-compatible method for micromechanical analysis of multi-phase composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gan, Hewen ; Orozco, Carlos E. ; Herakovich, Carl T.</creator><creatorcontrib>Gan, Hewen ; Orozco, Carlos E. ; Herakovich, Carl T.</creatorcontrib><description>A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear coupling effect, absent in the generalized method of cells. Because of this shear coupling, the method is especially useful when shear effects are important. In the present study, the new method is used to predict the micro-stresses and to model the effective elastic constants of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with those of well-established traditional tools like finite element analysis. A variety of numerical results comparing the accuracy and performance of the new method with those of the generalized method of cells, the finite element method, and the classical Reuss and Voigt approximations is presented.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(99)00199-7</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Composite mechanics ; Computational techniques ; Cross-disciplinary physics: materials science; rheology ; Elasticity and anelasticity ; Elasticity and anelasticity, stress-strain relations ; Exact sciences and technology ; Finite-element and galerkin methods ; Materials science ; Mathematical methods in physics ; Micromechanical models ; Physics ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>International journal of solids and structures, 2000-09, Vol.37 (37), p.5097-5122</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3e5c7abbed47f12f5910e50f03d83a30b0ebbde522be9b129aaf06721a44e4753</citedby><cites>FETCH-LOGICAL-c367t-3e5c7abbed47f12f5910e50f03d83a30b0ebbde522be9b129aaf06721a44e4753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(99)00199-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1405000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gan, Hewen</creatorcontrib><creatorcontrib>Orozco, Carlos E.</creatorcontrib><creatorcontrib>Herakovich, Carl T.</creatorcontrib><title>A strain-compatible method for micromechanical analysis of multi-phase composites</title><title>International journal of solids and structures</title><description>A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear coupling effect, absent in the generalized method of cells. Because of this shear coupling, the method is especially useful when shear effects are important. In the present study, the new method is used to predict the micro-stresses and to model the effective elastic constants of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with those of well-established traditional tools like finite element analysis. A variety of numerical results comparing the accuracy and performance of the new method with those of the generalized method of cells, the finite element method, and the classical Reuss and Voigt approximations is presented.</description><subject>Composite mechanics</subject><subject>Computational techniques</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Elasticity and anelasticity</subject><subject>Elasticity and anelasticity, stress-strain relations</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Materials science</subject><subject>Mathematical methods in physics</subject><subject>Micromechanical models</subject><subject>Physics</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEHET1UJ_1KcxIRv0AQUc9hmk7YSNusma7gv7frih49zeV55-V9hDiUcCZBVufPABmkqqrzE61PAaTWqdoSM1krnWayqLbF7BfZFXvMbwBQ5Bpm4uky4TGiH1Ib-iWOvuko6WlchDZxISa9tzH0ZBc4eItdggN2n-w5CS7pV93o0-UCmZJ1OrAfiffFjsOO6eDnzsXrzfXL1V368Hh7f3X5kNq8UmOaU2kVNg21hXIyc6WWQCU4yNs6xxwaoKZpqcyyhnQjM43ooFKZxKKgQpX5XBxv_i5jeF8Rj6b3bKnrcKCwYpMpVdZQVxNYbsBpCXMkZ5bR9xg_jQSzFmi-BZq1HaO1-RZo1JQ7-ilAnqa7iIP1_BcuoJw0TtjFBqNp7IenaNh6Giy1PpIdTRv8P0Vfu_CF3g</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Gan, Hewen</creator><creator>Orozco, Carlos E.</creator><creator>Herakovich, Carl T.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20000901</creationdate><title>A strain-compatible method for micromechanical analysis of multi-phase composites</title><author>Gan, Hewen ; Orozco, Carlos E. ; Herakovich, Carl T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3e5c7abbed47f12f5910e50f03d83a30b0ebbde522be9b129aaf06721a44e4753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Composite mechanics</topic><topic>Computational techniques</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Elasticity and anelasticity</topic><topic>Elasticity and anelasticity, stress-strain relations</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Materials science</topic><topic>Mathematical methods in physics</topic><topic>Micromechanical models</topic><topic>Physics</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Hewen</creatorcontrib><creatorcontrib>Orozco, Carlos E.</creatorcontrib><creatorcontrib>Herakovich, Carl T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Hewen</au><au>Orozco, Carlos E.</au><au>Herakovich, Carl T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A strain-compatible method for micromechanical analysis of multi-phase composites</atitle><jtitle>International journal of solids and structures</jtitle><date>2000-09-01</date><risdate>2000</risdate><volume>37</volume><issue>37</issue><spage>5097</spage><epage>5122</epage><pages>5097-5122</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear coupling effect, absent in the generalized method of cells. Because of this shear coupling, the method is especially useful when shear effects are important. In the present study, the new method is used to predict the micro-stresses and to model the effective elastic constants of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with those of well-established traditional tools like finite element analysis. A variety of numerical results comparing the accuracy and performance of the new method with those of the generalized method of cells, the finite element method, and the classical Reuss and Voigt approximations is presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(99)00199-7</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2000-09, Vol.37 (37), p.5097-5122
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_27758086
source Elsevier ScienceDirect Journals Complete
subjects Composite mechanics
Computational techniques
Cross-disciplinary physics: materials science
rheology
Elasticity and anelasticity
Elasticity and anelasticity, stress-strain relations
Exact sciences and technology
Finite-element and galerkin methods
Materials science
Mathematical methods in physics
Micromechanical models
Physics
Treatment of materials and its effects on microstructure and properties
title A strain-compatible method for micromechanical analysis of multi-phase composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20strain-compatible%20method%20for%20micromechanical%20analysis%20of%20multi-phase%20composites&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Gan,%20Hewen&rft.date=2000-09-01&rft.volume=37&rft.issue=37&rft.spage=5097&rft.epage=5122&rft.pages=5097-5122&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(99)00199-7&rft_dat=%3Cproquest_cross%3E27758086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27758086&rft_id=info:pmid/&rft_els_id=S0020768399001997&rfr_iscdi=true