A strain-compatible method for micromechanical analysis of multi-phase composites
A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear couplin...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2000-09, Vol.37 (37), p.5097-5122 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5122 |
---|---|
container_issue | 37 |
container_start_page | 5097 |
container_title | International journal of solids and structures |
container_volume | 37 |
creator | Gan, Hewen Orozco, Carlos E. Herakovich, Carl T. |
description | A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear coupling effect, absent in the generalized method of cells. Because of this shear coupling, the method is especially useful when shear effects are important. In the present study, the new method is used to predict the micro-stresses and to model the effective elastic constants of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with those of well-established traditional tools like finite element analysis. A variety of numerical results comparing the accuracy and performance of the new method with those of the generalized method of cells, the finite element method, and the classical Reuss and Voigt approximations is presented. |
doi_str_mv | 10.1016/S0020-7683(99)00199-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27758086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768399001997</els_id><sourcerecordid>27758086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3e5c7abbed47f12f5910e50f03d83a30b0ebbde522be9b129aaf06721a44e4753</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEHET1UJ_1KcxIRv0AQUc9hmk7YSNusma7gv7frih49zeV55-V9hDiUcCZBVufPABmkqqrzE61PAaTWqdoSM1krnWayqLbF7BfZFXvMbwBQ5Bpm4uky4TGiH1Ib-iWOvuko6WlchDZxISa9tzH0ZBc4eItdggN2n-w5CS7pV93o0-UCmZJ1OrAfiffFjsOO6eDnzsXrzfXL1V368Hh7f3X5kNq8UmOaU2kVNg21hXIyc6WWQCU4yNs6xxwaoKZpqcyyhnQjM43ooFKZxKKgQpX5XBxv_i5jeF8Rj6b3bKnrcKCwYpMpVdZQVxNYbsBpCXMkZ5bR9xg_jQSzFmi-BZq1HaO1-RZo1JQ7-ilAnqa7iIP1_BcuoJw0TtjFBqNp7IenaNh6Giy1PpIdTRv8P0Vfu_CF3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27758086</pqid></control><display><type>article</type><title>A strain-compatible method for micromechanical analysis of multi-phase composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gan, Hewen ; Orozco, Carlos E. ; Herakovich, Carl T.</creator><creatorcontrib>Gan, Hewen ; Orozco, Carlos E. ; Herakovich, Carl T.</creatorcontrib><description>A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear coupling effect, absent in the generalized method of cells. Because of this shear coupling, the method is especially useful when shear effects are important. In the present study, the new method is used to predict the micro-stresses and to model the effective elastic constants of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with those of well-established traditional tools like finite element analysis. A variety of numerical results comparing the accuracy and performance of the new method with those of the generalized method of cells, the finite element method, and the classical Reuss and Voigt approximations is presented.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(99)00199-7</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Composite mechanics ; Computational techniques ; Cross-disciplinary physics: materials science; rheology ; Elasticity and anelasticity ; Elasticity and anelasticity, stress-strain relations ; Exact sciences and technology ; Finite-element and galerkin methods ; Materials science ; Mathematical methods in physics ; Micromechanical models ; Physics ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>International journal of solids and structures, 2000-09, Vol.37 (37), p.5097-5122</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3e5c7abbed47f12f5910e50f03d83a30b0ebbde522be9b129aaf06721a44e4753</citedby><cites>FETCH-LOGICAL-c367t-3e5c7abbed47f12f5910e50f03d83a30b0ebbde522be9b129aaf06721a44e4753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(99)00199-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1405000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gan, Hewen</creatorcontrib><creatorcontrib>Orozco, Carlos E.</creatorcontrib><creatorcontrib>Herakovich, Carl T.</creatorcontrib><title>A strain-compatible method for micromechanical analysis of multi-phase composites</title><title>International journal of solids and structures</title><description>A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear coupling effect, absent in the generalized method of cells. Because of this shear coupling, the method is especially useful when shear effects are important. In the present study, the new method is used to predict the micro-stresses and to model the effective elastic constants of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with those of well-established traditional tools like finite element analysis. A variety of numerical results comparing the accuracy and performance of the new method with those of the generalized method of cells, the finite element method, and the classical Reuss and Voigt approximations is presented.</description><subject>Composite mechanics</subject><subject>Computational techniques</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Elasticity and anelasticity</subject><subject>Elasticity and anelasticity, stress-strain relations</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Materials science</subject><subject>Mathematical methods in physics</subject><subject>Micromechanical models</subject><subject>Physics</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEHET1UJ_1KcxIRv0AQUc9hmk7YSNusma7gv7frih49zeV55-V9hDiUcCZBVufPABmkqqrzE61PAaTWqdoSM1krnWayqLbF7BfZFXvMbwBQ5Bpm4uky4TGiH1Ib-iWOvuko6WlchDZxISa9tzH0ZBc4eItdggN2n-w5CS7pV93o0-UCmZJ1OrAfiffFjsOO6eDnzsXrzfXL1V368Hh7f3X5kNq8UmOaU2kVNg21hXIyc6WWQCU4yNs6xxwaoKZpqcyyhnQjM43ooFKZxKKgQpX5XBxv_i5jeF8Rj6b3bKnrcKCwYpMpVdZQVxNYbsBpCXMkZ5bR9xg_jQSzFmi-BZq1HaO1-RZo1JQ7-ilAnqa7iIP1_BcuoJw0TtjFBqNp7IenaNh6Giy1PpIdTRv8P0Vfu_CF3g</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Gan, Hewen</creator><creator>Orozco, Carlos E.</creator><creator>Herakovich, Carl T.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20000901</creationdate><title>A strain-compatible method for micromechanical analysis of multi-phase composites</title><author>Gan, Hewen ; Orozco, Carlos E. ; Herakovich, Carl T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3e5c7abbed47f12f5910e50f03d83a30b0ebbde522be9b129aaf06721a44e4753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Composite mechanics</topic><topic>Computational techniques</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Elasticity and anelasticity</topic><topic>Elasticity and anelasticity, stress-strain relations</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Materials science</topic><topic>Mathematical methods in physics</topic><topic>Micromechanical models</topic><topic>Physics</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Hewen</creatorcontrib><creatorcontrib>Orozco, Carlos E.</creatorcontrib><creatorcontrib>Herakovich, Carl T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Hewen</au><au>Orozco, Carlos E.</au><au>Herakovich, Carl T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A strain-compatible method for micromechanical analysis of multi-phase composites</atitle><jtitle>International journal of solids and structures</jtitle><date>2000-09-01</date><risdate>2000</risdate><volume>37</volume><issue>37</issue><spage>5097</spage><epage>5122</epage><pages>5097-5122</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>A new method for micromechanical analysis of multi-phase composites is presented. The new method is inspired by the generalized method of cells which is widely utilized in the field of composite mechanics. The new method, called strain-compatible method of cells, exhibits the so called shear coupling effect, absent in the generalized method of cells. Because of this shear coupling, the method is especially useful when shear effects are important. In the present study, the new method is used to predict the micro-stresses and to model the effective elastic constants of unidirectional composites. Results obtained with the strain-compatible method of cells compare very well with those of well-established traditional tools like finite element analysis. A variety of numerical results comparing the accuracy and performance of the new method with those of the generalized method of cells, the finite element method, and the classical Reuss and Voigt approximations is presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(99)00199-7</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2000-09, Vol.37 (37), p.5097-5122 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_27758086 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Composite mechanics Computational techniques Cross-disciplinary physics: materials science rheology Elasticity and anelasticity Elasticity and anelasticity, stress-strain relations Exact sciences and technology Finite-element and galerkin methods Materials science Mathematical methods in physics Micromechanical models Physics Treatment of materials and its effects on microstructure and properties |
title | A strain-compatible method for micromechanical analysis of multi-phase composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20strain-compatible%20method%20for%20micromechanical%20analysis%20of%20multi-phase%20composites&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Gan,%20Hewen&rft.date=2000-09-01&rft.volume=37&rft.issue=37&rft.spage=5097&rft.epage=5122&rft.pages=5097-5122&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(99)00199-7&rft_dat=%3Cproquest_cross%3E27758086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27758086&rft_id=info:pmid/&rft_els_id=S0020768399001997&rfr_iscdi=true |