Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force
In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In th...
Gespeichert in:
Veröffentlicht in: | Gastrointestinal endoscopy 2023-05, Vol.97 (5), p.815-824.e1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824.e1 |
---|---|
container_issue | 5 |
container_start_page | 815 |
container_title | Gastrointestinal endoscopy |
container_volume | 97 |
creator | Parasa, Sravanthi Repici, Alessandro Berzin, Tyler Leggett, Cadman Gross, Seth A. Sharma, Prateek |
description | In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy. |
doi_str_mv | 10.1016/j.gie.2022.10.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775626618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016510722020521</els_id><sourcerecordid>2775626618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-63935eb48945c70cac4c9df0ab1b9235052a67c57e3c8f4b45ee7f28d2fede123</originalsourceid><addsrcrecordid>eNp9UcFu1DAUjBCILoUP4IJ85JLFdhI7gdOq6pZKlThQzpbjvGzfNrYX2wvaP-5n1NkthRMny6N5M_PeFMV7RpeMMvFpu9wgLDnlPP-XGXlRLBjtZCmk7F4WC5qhsmFUnhVvYtxSSltesdfFWSWkqNtWLIqHddAWfvtwT7QbiIUU0EQy-kDSHRAzoUOjJ7KPcCSg3U1gwSWd0DviR6JDwhENZhK6BNOEG3Ams6eND5jubJxxT8ANPhq_O5Bd0Cahgc8kgPE2qw1HtWwbvD36rizkHNqR794gpMMx0JWOKfjZJCZ02e_yWXL1N8T1vyFudbwnax8MvC1ejXqK8O7pPS9-rC9vL76WN9-uri9WN6WpOpFKUXVVA33ddnVjJDXa1KYbRqp71ne8amjDtZCmkVCZdqz7ugGQI28HPsIAjFfnxceT7i74n_ucVFmMJifSDvw-Ki5lI7gQrM1UdqKa4GMMMKpdQKvDQTGq5oLVVuWC1VzwDGUkz3x4kt_3FobniT-NZsKXEwHykr8Qgor5gvkWA-ZrJzV4_I_8I0CAvis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775626618</pqid></control><display><type>article</type><title>Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Parasa, Sravanthi ; Repici, Alessandro ; Berzin, Tyler ; Leggett, Cadman ; Gross, Seth A. ; Sharma, Prateek</creator><creatorcontrib>Parasa, Sravanthi ; Repici, Alessandro ; Berzin, Tyler ; Leggett, Cadman ; Gross, Seth A. ; Sharma, Prateek</creatorcontrib><description>In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy.</description><identifier>ISSN: 0016-5107</identifier><identifier>EISSN: 1097-6779</identifier><identifier>DOI: 10.1016/j.gie.2022.10.016</identifier><identifier>PMID: 36764886</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Benchmarking ; Ecosystem ; Endoscopy, Gastrointestinal ; Humans ; Reproducibility of Results</subject><ispartof>Gastrointestinal endoscopy, 2023-05, Vol.97 (5), p.815-824.e1</ispartof><rights>2023 American Society for Gastrointestinal Endoscopy</rights><rights>Copyright © 2023 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-63935eb48945c70cac4c9df0ab1b9235052a67c57e3c8f4b45ee7f28d2fede123</citedby><cites>FETCH-LOGICAL-c396t-63935eb48945c70cac4c9df0ab1b9235052a67c57e3c8f4b45ee7f28d2fede123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gie.2022.10.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36764886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parasa, Sravanthi</creatorcontrib><creatorcontrib>Repici, Alessandro</creatorcontrib><creatorcontrib>Berzin, Tyler</creatorcontrib><creatorcontrib>Leggett, Cadman</creatorcontrib><creatorcontrib>Gross, Seth A.</creatorcontrib><creatorcontrib>Sharma, Prateek</creatorcontrib><title>Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force</title><title>Gastrointestinal endoscopy</title><addtitle>Gastrointest Endosc</addtitle><description>In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Benchmarking</subject><subject>Ecosystem</subject><subject>Endoscopy, Gastrointestinal</subject><subject>Humans</subject><subject>Reproducibility of Results</subject><issn>0016-5107</issn><issn>1097-6779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAUjBCILoUP4IJ85JLFdhI7gdOq6pZKlThQzpbjvGzfNrYX2wvaP-5n1NkthRMny6N5M_PeFMV7RpeMMvFpu9wgLDnlPP-XGXlRLBjtZCmk7F4WC5qhsmFUnhVvYtxSSltesdfFWSWkqNtWLIqHddAWfvtwT7QbiIUU0EQy-kDSHRAzoUOjJ7KPcCSg3U1gwSWd0DviR6JDwhENZhK6BNOEG3Ams6eND5jubJxxT8ANPhq_O5Bd0Cahgc8kgPE2qw1HtWwbvD36rizkHNqR794gpMMx0JWOKfjZJCZ02e_yWXL1N8T1vyFudbwnax8MvC1ejXqK8O7pPS9-rC9vL76WN9-uri9WN6WpOpFKUXVVA33ddnVjJDXa1KYbRqp71ne8amjDtZCmkVCZdqz7ugGQI28HPsIAjFfnxceT7i74n_ucVFmMJifSDvw-Ki5lI7gQrM1UdqKa4GMMMKpdQKvDQTGq5oLVVuWC1VzwDGUkz3x4kt_3FobniT-NZsKXEwHykr8Qgor5gvkWA-ZrJzV4_I_8I0CAvis</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Parasa, Sravanthi</creator><creator>Repici, Alessandro</creator><creator>Berzin, Tyler</creator><creator>Leggett, Cadman</creator><creator>Gross, Seth A.</creator><creator>Sharma, Prateek</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202305</creationdate><title>Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force</title><author>Parasa, Sravanthi ; Repici, Alessandro ; Berzin, Tyler ; Leggett, Cadman ; Gross, Seth A. ; Sharma, Prateek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-63935eb48945c70cac4c9df0ab1b9235052a67c57e3c8f4b45ee7f28d2fede123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Benchmarking</topic><topic>Ecosystem</topic><topic>Endoscopy, Gastrointestinal</topic><topic>Humans</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parasa, Sravanthi</creatorcontrib><creatorcontrib>Repici, Alessandro</creatorcontrib><creatorcontrib>Berzin, Tyler</creatorcontrib><creatorcontrib>Leggett, Cadman</creatorcontrib><creatorcontrib>Gross, Seth A.</creatorcontrib><creatorcontrib>Sharma, Prateek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Gastrointestinal endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parasa, Sravanthi</au><au>Repici, Alessandro</au><au>Berzin, Tyler</au><au>Leggett, Cadman</au><au>Gross, Seth A.</au><au>Sharma, Prateek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force</atitle><jtitle>Gastrointestinal endoscopy</jtitle><addtitle>Gastrointest Endosc</addtitle><date>2023-05</date><risdate>2023</risdate><volume>97</volume><issue>5</issue><spage>815</spage><epage>824.e1</epage><pages>815-824.e1</pages><issn>0016-5107</issn><eissn>1097-6779</eissn><abstract>In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36764886</pmid><doi>10.1016/j.gie.2022.10.016</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-5107 |
ispartof | Gastrointestinal endoscopy, 2023-05, Vol.97 (5), p.815-824.e1 |
issn | 0016-5107 1097-6779 |
language | eng |
recordid | cdi_proquest_miscellaneous_2775626618 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Artificial Intelligence Benchmarking Ecosystem Endoscopy, Gastrointestinal Humans Reproducibility of Results |
title | Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20and%20metrics%20for%20the%20clinical%20use%20and%20implementation%20of%20artificial%20intelligence%20algorithms%20into%20endoscopy%20practice:%20recommendations%20from%20the%20American%20Society%20for%20Gastrointestinal%20Endoscopy%20Artificial%20Intelligence%20Task%20Force&rft.jtitle=Gastrointestinal%20endoscopy&rft.au=Parasa,%20Sravanthi&rft.date=2023-05&rft.volume=97&rft.issue=5&rft.spage=815&rft.epage=824.e1&rft.pages=815-824.e1&rft.issn=0016-5107&rft.eissn=1097-6779&rft_id=info:doi/10.1016/j.gie.2022.10.016&rft_dat=%3Cproquest_cross%3E2775626618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775626618&rft_id=info:pmid/36764886&rft_els_id=S0016510722020521&rfr_iscdi=true |