Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force

In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastrointestinal endoscopy 2023-05, Vol.97 (5), p.815-824.e1
Hauptverfasser: Parasa, Sravanthi, Repici, Alessandro, Berzin, Tyler, Leggett, Cadman, Gross, Seth A., Sharma, Prateek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824.e1
container_issue 5
container_start_page 815
container_title Gastrointestinal endoscopy
container_volume 97
creator Parasa, Sravanthi
Repici, Alessandro
Berzin, Tyler
Leggett, Cadman
Gross, Seth A.
Sharma, Prateek
description In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy.
doi_str_mv 10.1016/j.gie.2022.10.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775626618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016510722020521</els_id><sourcerecordid>2775626618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-63935eb48945c70cac4c9df0ab1b9235052a67c57e3c8f4b45ee7f28d2fede123</originalsourceid><addsrcrecordid>eNp9UcFu1DAUjBCILoUP4IJ85JLFdhI7gdOq6pZKlThQzpbjvGzfNrYX2wvaP-5n1NkthRMny6N5M_PeFMV7RpeMMvFpu9wgLDnlPP-XGXlRLBjtZCmk7F4WC5qhsmFUnhVvYtxSSltesdfFWSWkqNtWLIqHddAWfvtwT7QbiIUU0EQy-kDSHRAzoUOjJ7KPcCSg3U1gwSWd0DviR6JDwhENZhK6BNOEG3Ams6eND5jubJxxT8ANPhq_O5Bd0Cahgc8kgPE2qw1HtWwbvD36rizkHNqR794gpMMx0JWOKfjZJCZ02e_yWXL1N8T1vyFudbwnax8MvC1ejXqK8O7pPS9-rC9vL76WN9-uri9WN6WpOpFKUXVVA33ddnVjJDXa1KYbRqp71ne8amjDtZCmkVCZdqz7ugGQI28HPsIAjFfnxceT7i74n_ucVFmMJifSDvw-Ki5lI7gQrM1UdqKa4GMMMKpdQKvDQTGq5oLVVuWC1VzwDGUkz3x4kt_3FobniT-NZsKXEwHykr8Qgor5gvkWA-ZrJzV4_I_8I0CAvis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775626618</pqid></control><display><type>article</type><title>Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Parasa, Sravanthi ; Repici, Alessandro ; Berzin, Tyler ; Leggett, Cadman ; Gross, Seth A. ; Sharma, Prateek</creator><creatorcontrib>Parasa, Sravanthi ; Repici, Alessandro ; Berzin, Tyler ; Leggett, Cadman ; Gross, Seth A. ; Sharma, Prateek</creatorcontrib><description>In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy.</description><identifier>ISSN: 0016-5107</identifier><identifier>EISSN: 1097-6779</identifier><identifier>DOI: 10.1016/j.gie.2022.10.016</identifier><identifier>PMID: 36764886</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Benchmarking ; Ecosystem ; Endoscopy, Gastrointestinal ; Humans ; Reproducibility of Results</subject><ispartof>Gastrointestinal endoscopy, 2023-05, Vol.97 (5), p.815-824.e1</ispartof><rights>2023 American Society for Gastrointestinal Endoscopy</rights><rights>Copyright © 2023 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-63935eb48945c70cac4c9df0ab1b9235052a67c57e3c8f4b45ee7f28d2fede123</citedby><cites>FETCH-LOGICAL-c396t-63935eb48945c70cac4c9df0ab1b9235052a67c57e3c8f4b45ee7f28d2fede123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gie.2022.10.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36764886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parasa, Sravanthi</creatorcontrib><creatorcontrib>Repici, Alessandro</creatorcontrib><creatorcontrib>Berzin, Tyler</creatorcontrib><creatorcontrib>Leggett, Cadman</creatorcontrib><creatorcontrib>Gross, Seth A.</creatorcontrib><creatorcontrib>Sharma, Prateek</creatorcontrib><title>Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force</title><title>Gastrointestinal endoscopy</title><addtitle>Gastrointest Endosc</addtitle><description>In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Benchmarking</subject><subject>Ecosystem</subject><subject>Endoscopy, Gastrointestinal</subject><subject>Humans</subject><subject>Reproducibility of Results</subject><issn>0016-5107</issn><issn>1097-6779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAUjBCILoUP4IJ85JLFdhI7gdOq6pZKlThQzpbjvGzfNrYX2wvaP-5n1NkthRMny6N5M_PeFMV7RpeMMvFpu9wgLDnlPP-XGXlRLBjtZCmk7F4WC5qhsmFUnhVvYtxSSltesdfFWSWkqNtWLIqHddAWfvtwT7QbiIUU0EQy-kDSHRAzoUOjJ7KPcCSg3U1gwSWd0DviR6JDwhENZhK6BNOEG3Ams6eND5jubJxxT8ANPhq_O5Bd0Cahgc8kgPE2qw1HtWwbvD36rizkHNqR794gpMMx0JWOKfjZJCZ02e_yWXL1N8T1vyFudbwnax8MvC1ejXqK8O7pPS9-rC9vL76WN9-uri9WN6WpOpFKUXVVA33ddnVjJDXa1KYbRqp71ne8amjDtZCmkVCZdqz7ugGQI28HPsIAjFfnxceT7i74n_ucVFmMJifSDvw-Ki5lI7gQrM1UdqKa4GMMMKpdQKvDQTGq5oLVVuWC1VzwDGUkz3x4kt_3FobniT-NZsKXEwHykr8Qgor5gvkWA-ZrJzV4_I_8I0CAvis</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Parasa, Sravanthi</creator><creator>Repici, Alessandro</creator><creator>Berzin, Tyler</creator><creator>Leggett, Cadman</creator><creator>Gross, Seth A.</creator><creator>Sharma, Prateek</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202305</creationdate><title>Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force</title><author>Parasa, Sravanthi ; Repici, Alessandro ; Berzin, Tyler ; Leggett, Cadman ; Gross, Seth A. ; Sharma, Prateek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-63935eb48945c70cac4c9df0ab1b9235052a67c57e3c8f4b45ee7f28d2fede123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Benchmarking</topic><topic>Ecosystem</topic><topic>Endoscopy, Gastrointestinal</topic><topic>Humans</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parasa, Sravanthi</creatorcontrib><creatorcontrib>Repici, Alessandro</creatorcontrib><creatorcontrib>Berzin, Tyler</creatorcontrib><creatorcontrib>Leggett, Cadman</creatorcontrib><creatorcontrib>Gross, Seth A.</creatorcontrib><creatorcontrib>Sharma, Prateek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Gastrointestinal endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parasa, Sravanthi</au><au>Repici, Alessandro</au><au>Berzin, Tyler</au><au>Leggett, Cadman</au><au>Gross, Seth A.</au><au>Sharma, Prateek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force</atitle><jtitle>Gastrointestinal endoscopy</jtitle><addtitle>Gastrointest Endosc</addtitle><date>2023-05</date><risdate>2023</risdate><volume>97</volume><issue>5</issue><spage>815</spage><epage>824.e1</epage><pages>815-824.e1</pages><issn>0016-5107</issn><eissn>1097-6779</eissn><abstract>In the past few years, we have seen a surge in the development of relevant artificial intelligence (AI) algorithms addressing a variety of needs in GI endoscopy. To accept AI algorithms into clinical practice, their effectiveness, clinical value, and reliability need to be rigorously assessed. In this article, we provide a guiding framework for all stakeholders in the endoscopy AI ecosystem regarding the standards, metrics, and evaluation methods for emerging and existing AI applications to aid in their clinical adoption and implementation. We also provide guidance and best practices for evaluation of AI technologies as they mature in the endoscopy space. Note, this is a living document; periodic updates will be published as progress is made and applications evolve in the field of AI in endoscopy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36764886</pmid><doi>10.1016/j.gie.2022.10.016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-5107
ispartof Gastrointestinal endoscopy, 2023-05, Vol.97 (5), p.815-824.e1
issn 0016-5107
1097-6779
language eng
recordid cdi_proquest_miscellaneous_2775626618
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Artificial Intelligence
Benchmarking
Ecosystem
Endoscopy, Gastrointestinal
Humans
Reproducibility of Results
title Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20and%20metrics%20for%20the%20clinical%20use%20and%20implementation%20of%20artificial%20intelligence%20algorithms%20into%20endoscopy%20practice:%20recommendations%20from%20the%20American%20Society%20for%20Gastrointestinal%20Endoscopy%20Artificial%20Intelligence%20Task%20Force&rft.jtitle=Gastrointestinal%20endoscopy&rft.au=Parasa,%20Sravanthi&rft.date=2023-05&rft.volume=97&rft.issue=5&rft.spage=815&rft.epage=824.e1&rft.pages=815-824.e1&rft.issn=0016-5107&rft.eissn=1097-6779&rft_id=info:doi/10.1016/j.gie.2022.10.016&rft_dat=%3Cproquest_cross%3E2775626618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775626618&rft_id=info:pmid/36764886&rft_els_id=S0016510722020521&rfr_iscdi=true