Muscleblind‐like 2 knockout shifts adducin 1 isoform expression and alters dendritic spine dynamics of cortical neurons during brain development

Aims Muscleblind‐like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropathology and applied neurobiology 2023-04, Vol.49 (2), p.e12890-n/a
Hauptverfasser: Huang, Chia‐Wei, Lee, Kuang‐Yung, Lin, Peng‐Tzu, Nian, Fang‐Shin, Cheng, Haw‐Yuan, Chang, Chien‐Hui, Liao, Cheng‐Yen, Su, Yen‐Lin, Seah, Carol, Li, Ching, Chen, Yu‐Fu, Lee, Mei‐Hsuan, Tsai, Jin‐Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e12890
container_title Neuropathology and applied neurobiology
container_volume 49
creator Huang, Chia‐Wei
Lee, Kuang‐Yung
Lin, Peng‐Tzu
Nian, Fang‐Shin
Cheng, Haw‐Yuan
Chang, Chien‐Hui
Liao, Cheng‐Yen
Su, Yen‐Lin
Seah, Carol
Li, Ching
Chen, Yu‐Fu
Lee, Mei‐Hsuan
Tsai, Jin‐Wu
description Aims Muscleblind‐like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study, we aim to investigate the impact of MBNL2 elimination on neuronal development by Mbnl2 conditional knockout (CKO) mouse models. Methods To create Mbnl2 knockout neurons, cDNA encoding Cre‐recombinase was delivered into neural progenitors of Mbnl2flox/flox mouse brains by in utero electroporation. The morphologies and dynamics of dendritic spines were monitored by confocal and two‐photon microscopy in brain slices and live animals from the neonatal period into adulthood. To investigate the underlying molecular mechanism, we further detected the changes in the splicing and molecular interactions of proteins associated with spinogenesis. Results We found that Mbnl2 knockout in cortical neurons decreased dendritic spine density and dynamics in adolescent mice. Mbnl2 ablation caused the adducin 1 (ADD1) isoform to switch from adult to fetal with a frameshift, and the truncated ADD1 failed to interact with alpha‐II spectrin (SPTAN1), a critical protein for spinogenesis. In addition, expression of ADD1 adult isoform compensated for the reduced dendritic spine density in cortical neurons deprived of MBNL2. Conclusion MBNL2 plays a critical role in maintaining the dynamics and homeostasis of dendritic spines in the developing brain. Mis‐splicing of downstream ADD1 may account for the alterations and contribute to the DM brain pathogenesis. In Mbnl2‐knockout mouse model of myotonic dystrophy (DM), the density and dynamics of dendritic spines of cortical neurons were decreased during adolescence. Meanwhile, adducin 1 (ADD1) switched from adult to fetal isoform with a frameshift, causing the truncated ADD1 failing to interact with alpha‐II spectrin (SPTAN1), a critical protein for spinogenesis. Their roles in maintaining the dynamics and homeostasis of dendritic spines in the developing brain may underlie the neurological symptoms in DM patients.
doi_str_mv 10.1111/nan.12890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775625761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805427702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-9624c4af2ef60e7696988b58f7ad6b873a51652282b6eafcf6fce4bd25e2b9b83</originalsourceid><addsrcrecordid>eNp10c9uFSEUBnBibOy1uvAFDIkbXUwLzMAwy6axatLWja4n_DkovQyMMKO9Ox_B-Ig-ibS3ujCRDQt--XIOH0LPKDmm9ZxEFY8pkwN5gDa0Fbxhw0Aeog1pCW-o7MQhelzKNSGE92J4hA5b0Qveyn6Dfl6uxQTQwUf76_uP4LeAGd7GZLZpXXD57N1SsLJ2NT5iin1JLuUJw82coRSfIlbRYhUWyAVbiDb7xRtcZh8B211UkzcFJ4dNyvVBBRxhzSlWvGYfP2GdVU228BVCmieIyxN04FQo8PT-PkIfz19_OHvbXLx_8-7s9KIxrZSkGQTrTKccAycI1L3EIKXm0vXKCi37VnEqOGOSaQHKGSecgU5bxoHpQcv2CL3c5845fVmhLOPki4EQVIS0lpH1PRes_hit9MU_9DqtOdbpRiYJ7yolrKpXe2VyKiWDG-fsJ5V3IyXjbVFjLWq8K6ra5_eJq57A_pV_mqngZA---QC7_yeNV6dX-8jfGy-gnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805427702</pqid></control><display><type>article</type><title>Muscleblind‐like 2 knockout shifts adducin 1 isoform expression and alters dendritic spine dynamics of cortical neurons during brain development</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Chia‐Wei ; Lee, Kuang‐Yung ; Lin, Peng‐Tzu ; Nian, Fang‐Shin ; Cheng, Haw‐Yuan ; Chang, Chien‐Hui ; Liao, Cheng‐Yen ; Su, Yen‐Lin ; Seah, Carol ; Li, Ching ; Chen, Yu‐Fu ; Lee, Mei‐Hsuan ; Tsai, Jin‐Wu</creator><creatorcontrib>Huang, Chia‐Wei ; Lee, Kuang‐Yung ; Lin, Peng‐Tzu ; Nian, Fang‐Shin ; Cheng, Haw‐Yuan ; Chang, Chien‐Hui ; Liao, Cheng‐Yen ; Su, Yen‐Lin ; Seah, Carol ; Li, Ching ; Chen, Yu‐Fu ; Lee, Mei‐Hsuan ; Tsai, Jin‐Wu</creatorcontrib><description>Aims Muscleblind‐like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study, we aim to investigate the impact of MBNL2 elimination on neuronal development by Mbnl2 conditional knockout (CKO) mouse models. Methods To create Mbnl2 knockout neurons, cDNA encoding Cre‐recombinase was delivered into neural progenitors of Mbnl2flox/flox mouse brains by in utero electroporation. The morphologies and dynamics of dendritic spines were monitored by confocal and two‐photon microscopy in brain slices and live animals from the neonatal period into adulthood. To investigate the underlying molecular mechanism, we further detected the changes in the splicing and molecular interactions of proteins associated with spinogenesis. Results We found that Mbnl2 knockout in cortical neurons decreased dendritic spine density and dynamics in adolescent mice. Mbnl2 ablation caused the adducin 1 (ADD1) isoform to switch from adult to fetal with a frameshift, and the truncated ADD1 failed to interact with alpha‐II spectrin (SPTAN1), a critical protein for spinogenesis. In addition, expression of ADD1 adult isoform compensated for the reduced dendritic spine density in cortical neurons deprived of MBNL2. Conclusion MBNL2 plays a critical role in maintaining the dynamics and homeostasis of dendritic spines in the developing brain. Mis‐splicing of downstream ADD1 may account for the alterations and contribute to the DM brain pathogenesis. In Mbnl2‐knockout mouse model of myotonic dystrophy (DM), the density and dynamics of dendritic spines of cortical neurons were decreased during adolescence. Meanwhile, adducin 1 (ADD1) switched from adult to fetal isoform with a frameshift, causing the truncated ADD1 failing to interact with alpha‐II spectrin (SPTAN1), a critical protein for spinogenesis. Their roles in maintaining the dynamics and homeostasis of dendritic spines in the developing brain may underlie the neurological symptoms in DM patients.</description><identifier>ISSN: 0305-1846</identifier><identifier>EISSN: 1365-2990</identifier><identifier>DOI: 10.1111/nan.12890</identifier><identifier>PMID: 36765387</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Add1 ; Adducin ; Alternative splicing ; Animal models ; Animals ; Brain ; Brain - pathology ; Brain slice preparation ; dendritic spine ; Dendritic spines ; Dendritic Spines - metabolism ; Dendritic Spines - pathology ; Electroporation ; Fetuses ; Homeostasis ; Mice ; muscleblind‐like ; Myotonic dystrophy ; Myotonic Dystrophy - genetics ; Neonates ; neural development ; Neural stem cells ; Neuropathogenesis ; Phenotypes ; Protein Isoforms - metabolism ; Recombinase ; Spectrin</subject><ispartof>Neuropathology and applied neurobiology, 2023-04, Vol.49 (2), p.e12890-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of British Neuropathological Society.</rights><rights>2023 The Authors. Neuropathology and Applied Neurobiology published by John Wiley &amp; Sons Ltd on behalf of British Neuropathological Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-9624c4af2ef60e7696988b58f7ad6b873a51652282b6eafcf6fce4bd25e2b9b83</citedby><cites>FETCH-LOGICAL-c3880-9624c4af2ef60e7696988b58f7ad6b873a51652282b6eafcf6fce4bd25e2b9b83</cites><orcidid>0000-0003-0135-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnan.12890$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnan.12890$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36765387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chia‐Wei</creatorcontrib><creatorcontrib>Lee, Kuang‐Yung</creatorcontrib><creatorcontrib>Lin, Peng‐Tzu</creatorcontrib><creatorcontrib>Nian, Fang‐Shin</creatorcontrib><creatorcontrib>Cheng, Haw‐Yuan</creatorcontrib><creatorcontrib>Chang, Chien‐Hui</creatorcontrib><creatorcontrib>Liao, Cheng‐Yen</creatorcontrib><creatorcontrib>Su, Yen‐Lin</creatorcontrib><creatorcontrib>Seah, Carol</creatorcontrib><creatorcontrib>Li, Ching</creatorcontrib><creatorcontrib>Chen, Yu‐Fu</creatorcontrib><creatorcontrib>Lee, Mei‐Hsuan</creatorcontrib><creatorcontrib>Tsai, Jin‐Wu</creatorcontrib><title>Muscleblind‐like 2 knockout shifts adducin 1 isoform expression and alters dendritic spine dynamics of cortical neurons during brain development</title><title>Neuropathology and applied neurobiology</title><addtitle>Neuropathol Appl Neurobiol</addtitle><description>Aims Muscleblind‐like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study, we aim to investigate the impact of MBNL2 elimination on neuronal development by Mbnl2 conditional knockout (CKO) mouse models. Methods To create Mbnl2 knockout neurons, cDNA encoding Cre‐recombinase was delivered into neural progenitors of Mbnl2flox/flox mouse brains by in utero electroporation. The morphologies and dynamics of dendritic spines were monitored by confocal and two‐photon microscopy in brain slices and live animals from the neonatal period into adulthood. To investigate the underlying molecular mechanism, we further detected the changes in the splicing and molecular interactions of proteins associated with spinogenesis. Results We found that Mbnl2 knockout in cortical neurons decreased dendritic spine density and dynamics in adolescent mice. Mbnl2 ablation caused the adducin 1 (ADD1) isoform to switch from adult to fetal with a frameshift, and the truncated ADD1 failed to interact with alpha‐II spectrin (SPTAN1), a critical protein for spinogenesis. In addition, expression of ADD1 adult isoform compensated for the reduced dendritic spine density in cortical neurons deprived of MBNL2. Conclusion MBNL2 plays a critical role in maintaining the dynamics and homeostasis of dendritic spines in the developing brain. Mis‐splicing of downstream ADD1 may account for the alterations and contribute to the DM brain pathogenesis. In Mbnl2‐knockout mouse model of myotonic dystrophy (DM), the density and dynamics of dendritic spines of cortical neurons were decreased during adolescence. Meanwhile, adducin 1 (ADD1) switched from adult to fetal isoform with a frameshift, causing the truncated ADD1 failing to interact with alpha‐II spectrin (SPTAN1), a critical protein for spinogenesis. Their roles in maintaining the dynamics and homeostasis of dendritic spines in the developing brain may underlie the neurological symptoms in DM patients.</description><subject>Add1</subject><subject>Adducin</subject><subject>Alternative splicing</subject><subject>Animal models</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain slice preparation</subject><subject>dendritic spine</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - metabolism</subject><subject>Dendritic Spines - pathology</subject><subject>Electroporation</subject><subject>Fetuses</subject><subject>Homeostasis</subject><subject>Mice</subject><subject>muscleblind‐like</subject><subject>Myotonic dystrophy</subject><subject>Myotonic Dystrophy - genetics</subject><subject>Neonates</subject><subject>neural development</subject><subject>Neural stem cells</subject><subject>Neuropathogenesis</subject><subject>Phenotypes</subject><subject>Protein Isoforms - metabolism</subject><subject>Recombinase</subject><subject>Spectrin</subject><issn>0305-1846</issn><issn>1365-2990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp10c9uFSEUBnBibOy1uvAFDIkbXUwLzMAwy6axatLWja4n_DkovQyMMKO9Ox_B-Ig-ibS3ujCRDQt--XIOH0LPKDmm9ZxEFY8pkwN5gDa0Fbxhw0Aeog1pCW-o7MQhelzKNSGE92J4hA5b0Qveyn6Dfl6uxQTQwUf76_uP4LeAGd7GZLZpXXD57N1SsLJ2NT5iin1JLuUJw82coRSfIlbRYhUWyAVbiDb7xRtcZh8B211UkzcFJ4dNyvVBBRxhzSlWvGYfP2GdVU228BVCmieIyxN04FQo8PT-PkIfz19_OHvbXLx_8-7s9KIxrZSkGQTrTKccAycI1L3EIKXm0vXKCi37VnEqOGOSaQHKGSecgU5bxoHpQcv2CL3c5845fVmhLOPki4EQVIS0lpH1PRes_hit9MU_9DqtOdbpRiYJ7yolrKpXe2VyKiWDG-fsJ5V3IyXjbVFjLWq8K6ra5_eJq57A_pV_mqngZA---QC7_yeNV6dX-8jfGy-gnQ</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Huang, Chia‐Wei</creator><creator>Lee, Kuang‐Yung</creator><creator>Lin, Peng‐Tzu</creator><creator>Nian, Fang‐Shin</creator><creator>Cheng, Haw‐Yuan</creator><creator>Chang, Chien‐Hui</creator><creator>Liao, Cheng‐Yen</creator><creator>Su, Yen‐Lin</creator><creator>Seah, Carol</creator><creator>Li, Ching</creator><creator>Chen, Yu‐Fu</creator><creator>Lee, Mei‐Hsuan</creator><creator>Tsai, Jin‐Wu</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0135-759X</orcidid></search><sort><creationdate>202304</creationdate><title>Muscleblind‐like 2 knockout shifts adducin 1 isoform expression and alters dendritic spine dynamics of cortical neurons during brain development</title><author>Huang, Chia‐Wei ; Lee, Kuang‐Yung ; Lin, Peng‐Tzu ; Nian, Fang‐Shin ; Cheng, Haw‐Yuan ; Chang, Chien‐Hui ; Liao, Cheng‐Yen ; Su, Yen‐Lin ; Seah, Carol ; Li, Ching ; Chen, Yu‐Fu ; Lee, Mei‐Hsuan ; Tsai, Jin‐Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-9624c4af2ef60e7696988b58f7ad6b873a51652282b6eafcf6fce4bd25e2b9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Add1</topic><topic>Adducin</topic><topic>Alternative splicing</topic><topic>Animal models</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain slice preparation</topic><topic>dendritic spine</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - metabolism</topic><topic>Dendritic Spines - pathology</topic><topic>Electroporation</topic><topic>Fetuses</topic><topic>Homeostasis</topic><topic>Mice</topic><topic>muscleblind‐like</topic><topic>Myotonic dystrophy</topic><topic>Myotonic Dystrophy - genetics</topic><topic>Neonates</topic><topic>neural development</topic><topic>Neural stem cells</topic><topic>Neuropathogenesis</topic><topic>Phenotypes</topic><topic>Protein Isoforms - metabolism</topic><topic>Recombinase</topic><topic>Spectrin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chia‐Wei</creatorcontrib><creatorcontrib>Lee, Kuang‐Yung</creatorcontrib><creatorcontrib>Lin, Peng‐Tzu</creatorcontrib><creatorcontrib>Nian, Fang‐Shin</creatorcontrib><creatorcontrib>Cheng, Haw‐Yuan</creatorcontrib><creatorcontrib>Chang, Chien‐Hui</creatorcontrib><creatorcontrib>Liao, Cheng‐Yen</creatorcontrib><creatorcontrib>Su, Yen‐Lin</creatorcontrib><creatorcontrib>Seah, Carol</creatorcontrib><creatorcontrib>Li, Ching</creatorcontrib><creatorcontrib>Chen, Yu‐Fu</creatorcontrib><creatorcontrib>Lee, Mei‐Hsuan</creatorcontrib><creatorcontrib>Tsai, Jin‐Wu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Neuropathology and applied neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chia‐Wei</au><au>Lee, Kuang‐Yung</au><au>Lin, Peng‐Tzu</au><au>Nian, Fang‐Shin</au><au>Cheng, Haw‐Yuan</au><au>Chang, Chien‐Hui</au><au>Liao, Cheng‐Yen</au><au>Su, Yen‐Lin</au><au>Seah, Carol</au><au>Li, Ching</au><au>Chen, Yu‐Fu</au><au>Lee, Mei‐Hsuan</au><au>Tsai, Jin‐Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muscleblind‐like 2 knockout shifts adducin 1 isoform expression and alters dendritic spine dynamics of cortical neurons during brain development</atitle><jtitle>Neuropathology and applied neurobiology</jtitle><addtitle>Neuropathol Appl Neurobiol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>49</volume><issue>2</issue><spage>e12890</spage><epage>n/a</epage><pages>e12890-n/a</pages><issn>0305-1846</issn><eissn>1365-2990</eissn><abstract>Aims Muscleblind‐like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study, we aim to investigate the impact of MBNL2 elimination on neuronal development by Mbnl2 conditional knockout (CKO) mouse models. Methods To create Mbnl2 knockout neurons, cDNA encoding Cre‐recombinase was delivered into neural progenitors of Mbnl2flox/flox mouse brains by in utero electroporation. The morphologies and dynamics of dendritic spines were monitored by confocal and two‐photon microscopy in brain slices and live animals from the neonatal period into adulthood. To investigate the underlying molecular mechanism, we further detected the changes in the splicing and molecular interactions of proteins associated with spinogenesis. Results We found that Mbnl2 knockout in cortical neurons decreased dendritic spine density and dynamics in adolescent mice. Mbnl2 ablation caused the adducin 1 (ADD1) isoform to switch from adult to fetal with a frameshift, and the truncated ADD1 failed to interact with alpha‐II spectrin (SPTAN1), a critical protein for spinogenesis. In addition, expression of ADD1 adult isoform compensated for the reduced dendritic spine density in cortical neurons deprived of MBNL2. Conclusion MBNL2 plays a critical role in maintaining the dynamics and homeostasis of dendritic spines in the developing brain. Mis‐splicing of downstream ADD1 may account for the alterations and contribute to the DM brain pathogenesis. In Mbnl2‐knockout mouse model of myotonic dystrophy (DM), the density and dynamics of dendritic spines of cortical neurons were decreased during adolescence. Meanwhile, adducin 1 (ADD1) switched from adult to fetal isoform with a frameshift, causing the truncated ADD1 failing to interact with alpha‐II spectrin (SPTAN1), a critical protein for spinogenesis. Their roles in maintaining the dynamics and homeostasis of dendritic spines in the developing brain may underlie the neurological symptoms in DM patients.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36765387</pmid><doi>10.1111/nan.12890</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0135-759X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1846
ispartof Neuropathology and applied neurobiology, 2023-04, Vol.49 (2), p.e12890-n/a
issn 0305-1846
1365-2990
language eng
recordid cdi_proquest_miscellaneous_2775625761
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Add1
Adducin
Alternative splicing
Animal models
Animals
Brain
Brain - pathology
Brain slice preparation
dendritic spine
Dendritic spines
Dendritic Spines - metabolism
Dendritic Spines - pathology
Electroporation
Fetuses
Homeostasis
Mice
muscleblind‐like
Myotonic dystrophy
Myotonic Dystrophy - genetics
Neonates
neural development
Neural stem cells
Neuropathogenesis
Phenotypes
Protein Isoforms - metabolism
Recombinase
Spectrin
title Muscleblind‐like 2 knockout shifts adducin 1 isoform expression and alters dendritic spine dynamics of cortical neurons during brain development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muscleblind%E2%80%90like%202%20knockout%20shifts%20adducin%201%20isoform%20expression%20and%20alters%20dendritic%20spine%20dynamics%20of%20cortical%20neurons%20during%20brain%20development&rft.jtitle=Neuropathology%20and%20applied%20neurobiology&rft.au=Huang,%20Chia%E2%80%90Wei&rft.date=2023-04&rft.volume=49&rft.issue=2&rft.spage=e12890&rft.epage=n/a&rft.pages=e12890-n/a&rft.issn=0305-1846&rft.eissn=1365-2990&rft_id=info:doi/10.1111/nan.12890&rft_dat=%3Cproquest_cross%3E2805427702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805427702&rft_id=info:pmid/36765387&rfr_iscdi=true