Tuning CO2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu–Ni Bimetal Catalysts
Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-02, Vol.15 (7), p.9373-9381 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9381 |
---|---|
container_issue | 7 |
container_start_page | 9373 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Reddy, Kasala Prabhakar Kim, Daeho Hong, Seunghwa Kim, Ki-Jeong Ryoo, Ryong Park, Jeong Young |
description | Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity. Herein, we synthesized well dispersed Cu–Ni bimetallic nanoparticles (NPs) using a simple hydrothermal method for CO selective CO2 hydrogenation. A detailed study on the monometallic (Ni and Cu) and bimetallic (Cu x Ni1–x ) catalysts supported on γ-Al2O3 was performed to increase CO selectivity while maintaining the high reaction rate. The Cu0.5Ni0.5/γ-Al2O3 catalyst shows a high CO2 conversion and more CO product selectivity than its monometallic counterparts. The surface electronic and geometric structure of Cu0.5Ni0.5 bimetallic NPs was studied using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier-transform spectroscopy under reaction conditions. The Cu core atoms migrate toward the surface, resulting in the restructuring of the Cu@Ni core–shell structure to a Cu–Ni alloy during the reaction and functioning as the active site by enhancing CO desorption. A systematic correlation is obtained between catalytic activity from a continuous fixed-bed flow reactor and the surface electronic structural details derived from AP-XPS results, establishing the structure–activity relationship. This investigation contributes to providing a strategy for controlling CO2 hydrogenation selectivity by modifying the surface structure of bimetallic NP catalysts. |
doi_str_mv | 10.1021/acsami.2c20832 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775623557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775623557</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-5fa822f86577a4e1e5688d76e95c6cb5b849cecf8473b9ed7e02fead5314601b3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rrMUIXV-M5OlxmqFYkHrOkwmN-mUNNHMTKE738E39ElMaXFzf7jnHg4fQtcETwim5E4bpzd2Qg3FitETNCIp57Gigp7-z5yfowvn1hgnjGIxQvUytLato2xBo9mu7LsaWu1t10bv0IDxdmv9LvKrvgv1KnoDbfbH-LG3W2iH3fk-GB_6vcfwlIXf759XGz3YDXjdRJke6s55d4nOKt04uDr2Mfp4mi6zWTxfPL9k9_NYE8F8LCqtKK1UIqTUHAiIRKlSJpAKk5hCFIqnBkyluGRFCqUETCvQpWCEJ5gUbIxuDr6fffcVhnj5xjoDTaNb6ILLqZQioUwIOUhvD9IBXL7uQt8OwXKC8z3N_EAzP9Jkf8u5a4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775623557</pqid></control><display><type>article</type><title>Tuning CO2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu–Ni Bimetal Catalysts</title><source>ACS Publications</source><creator>Reddy, Kasala Prabhakar ; Kim, Daeho ; Hong, Seunghwa ; Kim, Ki-Jeong ; Ryoo, Ryong ; Park, Jeong Young</creator><creatorcontrib>Reddy, Kasala Prabhakar ; Kim, Daeho ; Hong, Seunghwa ; Kim, Ki-Jeong ; Ryoo, Ryong ; Park, Jeong Young</creatorcontrib><description>Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity. Herein, we synthesized well dispersed Cu–Ni bimetallic nanoparticles (NPs) using a simple hydrothermal method for CO selective CO2 hydrogenation. A detailed study on the monometallic (Ni and Cu) and bimetallic (Cu x Ni1–x ) catalysts supported on γ-Al2O3 was performed to increase CO selectivity while maintaining the high reaction rate. The Cu0.5Ni0.5/γ-Al2O3 catalyst shows a high CO2 conversion and more CO product selectivity than its monometallic counterparts. The surface electronic and geometric structure of Cu0.5Ni0.5 bimetallic NPs was studied using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier-transform spectroscopy under reaction conditions. The Cu core atoms migrate toward the surface, resulting in the restructuring of the Cu@Ni core–shell structure to a Cu–Ni alloy during the reaction and functioning as the active site by enhancing CO desorption. A systematic correlation is obtained between catalytic activity from a continuous fixed-bed flow reactor and the surface electronic structural details derived from AP-XPS results, establishing the structure–activity relationship. This investigation contributes to providing a strategy for controlling CO2 hydrogenation selectivity by modifying the surface structure of bimetallic NP catalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c20832</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2023-02, Vol.15 (7), p.9373-9381</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8132-3076 ; 0000-0001-9233-3096 ; 0000-0002-9989-1549 ; 0000-0003-0047-3329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c20832$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c20832$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Reddy, Kasala Prabhakar</creatorcontrib><creatorcontrib>Kim, Daeho</creatorcontrib><creatorcontrib>Hong, Seunghwa</creatorcontrib><creatorcontrib>Kim, Ki-Jeong</creatorcontrib><creatorcontrib>Ryoo, Ryong</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><title>Tuning CO2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu–Ni Bimetal Catalysts</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity. Herein, we synthesized well dispersed Cu–Ni bimetallic nanoparticles (NPs) using a simple hydrothermal method for CO selective CO2 hydrogenation. A detailed study on the monometallic (Ni and Cu) and bimetallic (Cu x Ni1–x ) catalysts supported on γ-Al2O3 was performed to increase CO selectivity while maintaining the high reaction rate. The Cu0.5Ni0.5/γ-Al2O3 catalyst shows a high CO2 conversion and more CO product selectivity than its monometallic counterparts. The surface electronic and geometric structure of Cu0.5Ni0.5 bimetallic NPs was studied using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier-transform spectroscopy under reaction conditions. The Cu core atoms migrate toward the surface, resulting in the restructuring of the Cu@Ni core–shell structure to a Cu–Ni alloy during the reaction and functioning as the active site by enhancing CO desorption. A systematic correlation is obtained between catalytic activity from a continuous fixed-bed flow reactor and the surface electronic structural details derived from AP-XPS results, establishing the structure–activity relationship. This investigation contributes to providing a strategy for controlling CO2 hydrogenation selectivity by modifying the surface structure of bimetallic NP catalysts.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFa3rrMUIXV-M5OlxmqFYkHrOkwmN-mUNNHMTKE738E39ElMaXFzf7jnHg4fQtcETwim5E4bpzd2Qg3FitETNCIp57Gigp7-z5yfowvn1hgnjGIxQvUytLato2xBo9mu7LsaWu1t10bv0IDxdmv9LvKrvgv1KnoDbfbH-LG3W2iH3fk-GB_6vcfwlIXf759XGz3YDXjdRJke6s55d4nOKt04uDr2Mfp4mi6zWTxfPL9k9_NYE8F8LCqtKK1UIqTUHAiIRKlSJpAKk5hCFIqnBkyluGRFCqUETCvQpWCEJ5gUbIxuDr6fffcVhnj5xjoDTaNb6ILLqZQioUwIOUhvD9IBXL7uQt8OwXKC8z3N_EAzP9Jkf8u5a4Y</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Reddy, Kasala Prabhakar</creator><creator>Kim, Daeho</creator><creator>Hong, Seunghwa</creator><creator>Kim, Ki-Jeong</creator><creator>Ryoo, Ryong</creator><creator>Park, Jeong Young</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000-0001-9233-3096</orcidid><orcidid>https://orcid.org/0000-0002-9989-1549</orcidid><orcidid>https://orcid.org/0000-0003-0047-3329</orcidid></search><sort><creationdate>20230210</creationdate><title>Tuning CO2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu–Ni Bimetal Catalysts</title><author>Reddy, Kasala Prabhakar ; Kim, Daeho ; Hong, Seunghwa ; Kim, Ki-Jeong ; Ryoo, Ryong ; Park, Jeong Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-5fa822f86577a4e1e5688d76e95c6cb5b849cecf8473b9ed7e02fead5314601b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Kasala Prabhakar</creatorcontrib><creatorcontrib>Kim, Daeho</creatorcontrib><creatorcontrib>Hong, Seunghwa</creatorcontrib><creatorcontrib>Kim, Ki-Jeong</creatorcontrib><creatorcontrib>Ryoo, Ryong</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, Kasala Prabhakar</au><au>Kim, Daeho</au><au>Hong, Seunghwa</au><au>Kim, Ki-Jeong</au><au>Ryoo, Ryong</au><au>Park, Jeong Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning CO2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu–Ni Bimetal Catalysts</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>9373</spage><epage>9381</epage><pages>9373-9381</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity. Herein, we synthesized well dispersed Cu–Ni bimetallic nanoparticles (NPs) using a simple hydrothermal method for CO selective CO2 hydrogenation. A detailed study on the monometallic (Ni and Cu) and bimetallic (Cu x Ni1–x ) catalysts supported on γ-Al2O3 was performed to increase CO selectivity while maintaining the high reaction rate. The Cu0.5Ni0.5/γ-Al2O3 catalyst shows a high CO2 conversion and more CO product selectivity than its monometallic counterparts. The surface electronic and geometric structure of Cu0.5Ni0.5 bimetallic NPs was studied using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier-transform spectroscopy under reaction conditions. The Cu core atoms migrate toward the surface, resulting in the restructuring of the Cu@Ni core–shell structure to a Cu–Ni alloy during the reaction and functioning as the active site by enhancing CO desorption. A systematic correlation is obtained between catalytic activity from a continuous fixed-bed flow reactor and the surface electronic structural details derived from AP-XPS results, establishing the structure–activity relationship. This investigation contributes to providing a strategy for controlling CO2 hydrogenation selectivity by modifying the surface structure of bimetallic NP catalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c20832</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000-0001-9233-3096</orcidid><orcidid>https://orcid.org/0000-0002-9989-1549</orcidid><orcidid>https://orcid.org/0000-0003-0047-3329</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-02, Vol.15 (7), p.9373-9381 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2775623557 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Tuning CO2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu–Ni Bimetal Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20CO2%20Hydrogenation%20Selectivity%20through%20Reaction-Driven%20Restructuring%20on%20Cu%E2%80%93Ni%20Bimetal%20Catalysts&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Reddy,%20Kasala%20Prabhakar&rft.date=2023-02-10&rft.volume=15&rft.issue=7&rft.spage=9373&rft.epage=9381&rft.pages=9373-9381&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c20832&rft_dat=%3Cproquest_acs_j%3E2775623557%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775623557&rft_id=info:pmid/&rfr_iscdi=true |