Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste
Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded i...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2023-05, Vol.16 (10), p.e202300019-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | e202300019 |
container_title | ChemSusChem |
container_volume | 16 |
creator | Liu, Aotian Mollart, Catherine Trewin, Abbie Fan, Xianfeng Lau, Cher Hon |
description | Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture.
Radiant CO2 capture: To overcome CO2 uptake reduction for incorporating photo‐switches into adsorbents that could replace high‐energy‐consuming pressure or temperature swing procedures, we enrolled azobenzene with photo‐isomerization as guest molecules into hypercross‐linked polymers (HCPs) to yield HCPs@Azo. With UV irradiation, the CO2 uptake of HCPs@Azo is 22 % higher than as‐prepared HCPs because of the enlargement of pore sizes and dipole‐quadrupole interactions between cis‐azobenzene and CO2. |
doi_str_mv | 10.1002/cssc.202300019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775622643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815121722</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3069-65dc23b6d3da33322c33b57751f4e10caf2ab8ed49035816fbb52b204d49bd363</originalsourceid><addsrcrecordid>eNpdkEFLwzAUx4MoOKdXzwUvXjaTlzZrj1LUCZMN5tCLhDRNtVva1KRFevMj-Bn9JGZOdvD03vvx48_jj9A5wWOCMVxJ5-QYMFCMMUkO0IDELBxFLHw-3O-UHKMT59YYM5wwNkAvizfTmu_PrweTd1q0Zf0apHMIVk0rNiowRTDtG2WlNc55S5f1RuXBwui-UtZ5TfZSe1JYU_1i1_ZW1Sp4Eq5Vp-ioENqps785RKvbm8d0OprN7-7T69mooZglIxblEmjGcpoLSimApDSLJpOIFKEiWIoCRBarPEwwjWLCiiyLIAMcepLllNEhutzlNta8d8q1vCqdVFqLWpnOcfBZDICF1KsX_9S16Wztv-MQk4gAmQB4K9lZH6VWPW9sWQnbc4L5tmq-rZrvq-bpcpnuL_oDo5F2xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815121722</pqid></control><display><type>article</type><title>Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste</title><source>Wiley Online Library All Journals</source><creator>Liu, Aotian ; Mollart, Catherine ; Trewin, Abbie ; Fan, Xianfeng ; Lau, Cher Hon</creator><creatorcontrib>Liu, Aotian ; Mollart, Catherine ; Trewin, Abbie ; Fan, Xianfeng ; Lau, Cher Hon</creatorcontrib><description>Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture.
Radiant CO2 capture: To overcome CO2 uptake reduction for incorporating photo‐switches into adsorbents that could replace high‐energy‐consuming pressure or temperature swing procedures, we enrolled azobenzene with photo‐isomerization as guest molecules into hypercross‐linked polymers (HCPs) to yield HCPs@Azo. With UV irradiation, the CO2 uptake of HCPs@Azo is 22 % higher than as‐prepared HCPs because of the enlargement of pore sizes and dipole‐quadrupole interactions between cis‐azobenzene and CO2.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202300019</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Azo compounds ; Carbon dioxide ; Carbon sequestration ; Dipole moments ; hypercross-linked polymers ; low-energy carbon capture ; photochromism ; plastics recycling ; Polymers ; Polystyrene resins ; Switches</subject><ispartof>ChemSusChem, 2023-05, Vol.16 (10), p.e202300019-n/a</ispartof><rights>2023 The Authors. ChemSusChem published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1368-1506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202300019$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202300019$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Aotian</creatorcontrib><creatorcontrib>Mollart, Catherine</creatorcontrib><creatorcontrib>Trewin, Abbie</creatorcontrib><creatorcontrib>Fan, Xianfeng</creatorcontrib><creatorcontrib>Lau, Cher Hon</creatorcontrib><title>Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste</title><title>ChemSusChem</title><description>Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture.
Radiant CO2 capture: To overcome CO2 uptake reduction for incorporating photo‐switches into adsorbents that could replace high‐energy‐consuming pressure or temperature swing procedures, we enrolled azobenzene with photo‐isomerization as guest molecules into hypercross‐linked polymers (HCPs) to yield HCPs@Azo. With UV irradiation, the CO2 uptake of HCPs@Azo is 22 % higher than as‐prepared HCPs because of the enlargement of pore sizes and dipole‐quadrupole interactions between cis‐azobenzene and CO2.</description><subject>Azo compounds</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Dipole moments</subject><subject>hypercross-linked polymers</subject><subject>low-energy carbon capture</subject><subject>photochromism</subject><subject>plastics recycling</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Switches</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkEFLwzAUx4MoOKdXzwUvXjaTlzZrj1LUCZMN5tCLhDRNtVva1KRFevMj-Bn9JGZOdvD03vvx48_jj9A5wWOCMVxJ5-QYMFCMMUkO0IDELBxFLHw-3O-UHKMT59YYM5wwNkAvizfTmu_PrweTd1q0Zf0apHMIVk0rNiowRTDtG2WlNc55S5f1RuXBwui-UtZ5TfZSe1JYU_1i1_ZW1Sp4Eq5Vp-ioENqps785RKvbm8d0OprN7-7T69mooZglIxblEmjGcpoLSimApDSLJpOIFKEiWIoCRBarPEwwjWLCiiyLIAMcepLllNEhutzlNta8d8q1vCqdVFqLWpnOcfBZDICF1KsX_9S16Wztv-MQk4gAmQB4K9lZH6VWPW9sWQnbc4L5tmq-rZrvq-bpcpnuL_oDo5F2xw</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Liu, Aotian</creator><creator>Mollart, Catherine</creator><creator>Trewin, Abbie</creator><creator>Fan, Xianfeng</creator><creator>Lau, Cher Hon</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1368-1506</orcidid></search><sort><creationdate>20230519</creationdate><title>Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste</title><author>Liu, Aotian ; Mollart, Catherine ; Trewin, Abbie ; Fan, Xianfeng ; Lau, Cher Hon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3069-65dc23b6d3da33322c33b57751f4e10caf2ab8ed49035816fbb52b204d49bd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Azo compounds</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Dipole moments</topic><topic>hypercross-linked polymers</topic><topic>low-energy carbon capture</topic><topic>photochromism</topic><topic>plastics recycling</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Aotian</creatorcontrib><creatorcontrib>Mollart, Catherine</creatorcontrib><creatorcontrib>Trewin, Abbie</creatorcontrib><creatorcontrib>Fan, Xianfeng</creatorcontrib><creatorcontrib>Lau, Cher Hon</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Aotian</au><au>Mollart, Catherine</au><au>Trewin, Abbie</au><au>Fan, Xianfeng</au><au>Lau, Cher Hon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste</atitle><jtitle>ChemSusChem</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>e202300019</spage><epage>n/a</epage><pages>e202300019-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture.
Radiant CO2 capture: To overcome CO2 uptake reduction for incorporating photo‐switches into adsorbents that could replace high‐energy‐consuming pressure or temperature swing procedures, we enrolled azobenzene with photo‐isomerization as guest molecules into hypercross‐linked polymers (HCPs) to yield HCPs@Azo. With UV irradiation, the CO2 uptake of HCPs@Azo is 22 % higher than as‐prepared HCPs because of the enlargement of pore sizes and dipole‐quadrupole interactions between cis‐azobenzene and CO2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.202300019</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1368-1506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2023-05, Vol.16 (10), p.e202300019-n/a |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2775622643 |
source | Wiley Online Library All Journals |
subjects | Azo compounds Carbon dioxide Carbon sequestration Dipole moments hypercross-linked polymers low-energy carbon capture photochromism plastics recycling Polymers Polystyrene resins Switches |
title | Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo%E2%80%90Modulating%20CO2%20Uptake%20of%20Hypercross%E2%80%90linked%20Polymers%20Upcycled%20from%20Polystyrene%20Waste&rft.jtitle=ChemSusChem&rft.au=Liu,%20Aotian&rft.date=2023-05-19&rft.volume=16&rft.issue=10&rft.spage=e202300019&rft.epage=n/a&rft.pages=e202300019-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202300019&rft_dat=%3Cproquest_wiley%3E2815121722%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815121722&rft_id=info:pmid/&rfr_iscdi=true |