Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste

Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2023-05, Vol.16 (10), p.e202300019-n/a
Hauptverfasser: Liu, Aotian, Mollart, Catherine, Trewin, Abbie, Fan, Xianfeng, Lau, Cher Hon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e202300019
container_title ChemSusChem
container_volume 16
creator Liu, Aotian
Mollart, Catherine
Trewin, Abbie
Fan, Xianfeng
Lau, Cher Hon
description Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture. Radiant CO2 capture: To overcome CO2 uptake reduction for incorporating photo‐switches into adsorbents that could replace high‐energy‐consuming pressure or temperature swing procedures, we enrolled azobenzene with photo‐isomerization as guest molecules into hypercross‐linked polymers (HCPs) to yield HCPs@Azo. With UV irradiation, the CO2 uptake of HCPs@Azo is 22 % higher than as‐prepared HCPs because of the enlargement of pore sizes and dipole‐quadrupole interactions between cis‐azobenzene and CO2.
doi_str_mv 10.1002/cssc.202300019
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775622643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815121722</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3069-65dc23b6d3da33322c33b57751f4e10caf2ab8ed49035816fbb52b204d49bd363</originalsourceid><addsrcrecordid>eNpdkEFLwzAUx4MoOKdXzwUvXjaTlzZrj1LUCZMN5tCLhDRNtVva1KRFevMj-Bn9JGZOdvD03vvx48_jj9A5wWOCMVxJ5-QYMFCMMUkO0IDELBxFLHw-3O-UHKMT59YYM5wwNkAvizfTmu_PrweTd1q0Zf0apHMIVk0rNiowRTDtG2WlNc55S5f1RuXBwui-UtZ5TfZSe1JYU_1i1_ZW1Sp4Eq5Vp-ioENqps785RKvbm8d0OprN7-7T69mooZglIxblEmjGcpoLSimApDSLJpOIFKEiWIoCRBarPEwwjWLCiiyLIAMcepLllNEhutzlNta8d8q1vCqdVFqLWpnOcfBZDICF1KsX_9S16Wztv-MQk4gAmQB4K9lZH6VWPW9sWQnbc4L5tmq-rZrvq-bpcpnuL_oDo5F2xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815121722</pqid></control><display><type>article</type><title>Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste</title><source>Wiley Online Library All Journals</source><creator>Liu, Aotian ; Mollart, Catherine ; Trewin, Abbie ; Fan, Xianfeng ; Lau, Cher Hon</creator><creatorcontrib>Liu, Aotian ; Mollart, Catherine ; Trewin, Abbie ; Fan, Xianfeng ; Lau, Cher Hon</creatorcontrib><description>Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture. Radiant CO2 capture: To overcome CO2 uptake reduction for incorporating photo‐switches into adsorbents that could replace high‐energy‐consuming pressure or temperature swing procedures, we enrolled azobenzene with photo‐isomerization as guest molecules into hypercross‐linked polymers (HCPs) to yield HCPs@Azo. With UV irradiation, the CO2 uptake of HCPs@Azo is 22 % higher than as‐prepared HCPs because of the enlargement of pore sizes and dipole‐quadrupole interactions between cis‐azobenzene and CO2.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202300019</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Azo compounds ; Carbon dioxide ; Carbon sequestration ; Dipole moments ; hypercross-linked polymers ; low-energy carbon capture ; photochromism ; plastics recycling ; Polymers ; Polystyrene resins ; Switches</subject><ispartof>ChemSusChem, 2023-05, Vol.16 (10), p.e202300019-n/a</ispartof><rights>2023 The Authors. ChemSusChem published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1368-1506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202300019$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202300019$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Aotian</creatorcontrib><creatorcontrib>Mollart, Catherine</creatorcontrib><creatorcontrib>Trewin, Abbie</creatorcontrib><creatorcontrib>Fan, Xianfeng</creatorcontrib><creatorcontrib>Lau, Cher Hon</creatorcontrib><title>Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste</title><title>ChemSusChem</title><description>Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture. Radiant CO2 capture: To overcome CO2 uptake reduction for incorporating photo‐switches into adsorbents that could replace high‐energy‐consuming pressure or temperature swing procedures, we enrolled azobenzene with photo‐isomerization as guest molecules into hypercross‐linked polymers (HCPs) to yield HCPs@Azo. With UV irradiation, the CO2 uptake of HCPs@Azo is 22 % higher than as‐prepared HCPs because of the enlargement of pore sizes and dipole‐quadrupole interactions between cis‐azobenzene and CO2.</description><subject>Azo compounds</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Dipole moments</subject><subject>hypercross-linked polymers</subject><subject>low-energy carbon capture</subject><subject>photochromism</subject><subject>plastics recycling</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Switches</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkEFLwzAUx4MoOKdXzwUvXjaTlzZrj1LUCZMN5tCLhDRNtVva1KRFevMj-Bn9JGZOdvD03vvx48_jj9A5wWOCMVxJ5-QYMFCMMUkO0IDELBxFLHw-3O-UHKMT59YYM5wwNkAvizfTmu_PrweTd1q0Zf0apHMIVk0rNiowRTDtG2WlNc55S5f1RuXBwui-UtZ5TfZSe1JYU_1i1_ZW1Sp4Eq5Vp-ioENqps785RKvbm8d0OprN7-7T69mooZglIxblEmjGcpoLSimApDSLJpOIFKEiWIoCRBarPEwwjWLCiiyLIAMcepLllNEhutzlNta8d8q1vCqdVFqLWpnOcfBZDICF1KsX_9S16Wztv-MQk4gAmQB4K9lZH6VWPW9sWQnbc4L5tmq-rZrvq-bpcpnuL_oDo5F2xw</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Liu, Aotian</creator><creator>Mollart, Catherine</creator><creator>Trewin, Abbie</creator><creator>Fan, Xianfeng</creator><creator>Lau, Cher Hon</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1368-1506</orcidid></search><sort><creationdate>20230519</creationdate><title>Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste</title><author>Liu, Aotian ; Mollart, Catherine ; Trewin, Abbie ; Fan, Xianfeng ; Lau, Cher Hon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3069-65dc23b6d3da33322c33b57751f4e10caf2ab8ed49035816fbb52b204d49bd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Azo compounds</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Dipole moments</topic><topic>hypercross-linked polymers</topic><topic>low-energy carbon capture</topic><topic>photochromism</topic><topic>plastics recycling</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Aotian</creatorcontrib><creatorcontrib>Mollart, Catherine</creatorcontrib><creatorcontrib>Trewin, Abbie</creatorcontrib><creatorcontrib>Fan, Xianfeng</creatorcontrib><creatorcontrib>Lau, Cher Hon</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Aotian</au><au>Mollart, Catherine</au><au>Trewin, Abbie</au><au>Fan, Xianfeng</au><au>Lau, Cher Hon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste</atitle><jtitle>ChemSusChem</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>e202300019</spage><epage>n/a</epage><pages>e202300019-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Incorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture. Radiant CO2 capture: To overcome CO2 uptake reduction for incorporating photo‐switches into adsorbents that could replace high‐energy‐consuming pressure or temperature swing procedures, we enrolled azobenzene with photo‐isomerization as guest molecules into hypercross‐linked polymers (HCPs) to yield HCPs@Azo. With UV irradiation, the CO2 uptake of HCPs@Azo is 22 % higher than as‐prepared HCPs because of the enlargement of pore sizes and dipole‐quadrupole interactions between cis‐azobenzene and CO2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.202300019</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1368-1506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2023-05, Vol.16 (10), p.e202300019-n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2775622643
source Wiley Online Library All Journals
subjects Azo compounds
Carbon dioxide
Carbon sequestration
Dipole moments
hypercross-linked polymers
low-energy carbon capture
photochromism
plastics recycling
Polymers
Polystyrene resins
Switches
title Photo‐Modulating CO2 Uptake of Hypercross‐linked Polymers Upcycled from Polystyrene Waste
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo%E2%80%90Modulating%20CO2%20Uptake%20of%20Hypercross%E2%80%90linked%20Polymers%20Upcycled%20from%20Polystyrene%20Waste&rft.jtitle=ChemSusChem&rft.au=Liu,%20Aotian&rft.date=2023-05-19&rft.volume=16&rft.issue=10&rft.spage=e202300019&rft.epage=n/a&rft.pages=e202300019-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202300019&rft_dat=%3Cproquest_wiley%3E2815121722%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815121722&rft_id=info:pmid/&rfr_iscdi=true