N-acetylcysteine protects human periodontal ligament fibroblasts from pyroptosis and osteogenic differentiation dysfunction through the SIRT1/NF-κB/Caspase-1 signaling pathway
This study was aimed to determine whether N-acetylcysteine (NAC) could inhibit lipopolysaccharides / adenosine triphosphate (ATP)-induced pyroptosis and alleviate the damage of osteogenic differentiation in human periodontal ligament fibroblasts (hPDLFs). Furthermore, this study detected whether NAC...
Gespeichert in:
Veröffentlicht in: | Archives of oral biology 2023-04, Vol.148, p.105642-105642, Article 105642 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study was aimed to determine whether N-acetylcysteine (NAC) could inhibit lipopolysaccharides / adenosine triphosphate (ATP)-induced pyroptosis and alleviate the damage of osteogenic differentiation in human periodontal ligament fibroblasts (hPDLFs). Furthermore, this study detected whether NAC acted effectively by modulating the silent information regulator 2 homolog 1 (SIRT1)/ the nuclear factor-κB (NF-κB)/Caspase-1 signaling pathway in hPDLFs.
Cell Counting Kit-8 assay was employed to determine the appropriate concentration of NAC for the follow-up experiments. To explore the effect and the underlying mechanisms of NAC on pyroptosis and osteogenic differentiation in hPDLFs, intracellular reactive oxygen species levels were detected using 2′,7′-Dichlorodihydrofluorescein Diacetate kits. Moreover, SIRT1 inhibitor, SIRT1 activator, NF-κB inhibitor and Caspase-1 inhibitor were applied, the incidence of pyroptosis was detected by flow cytometry, the osteogenic differentiation of hPDLFs was observed using alkaline phosphatase and alizarin red staining, Real-time quantitative polymerase chain reaction and Western Blot were used to detect the expression of relevant factors, the release of interleukin-1β, interleukin-18 and lactate dehydrogenase were detected by Enzyme-linked immunosorbent assay.
The results demonstrated that NAC protected hPDLFs from lipopolysaccharides/ATP-induced damage, alleviating pyroptosis and osteogenic differentiation dysfunction. Moreover, NAC abrogated the inhibition of SIRT1 activity by scavenging reactive oxygen species, thereby reduced pyroptosis and osteogenic differentiation dysfunction by inhibiting the NF-κB/Caspase-1signaling pathway.
NAC could inhibit pyroptosis and osteogenic differentiation dysfunction of hPDLFs by scavenging reactive oxygen species to regulate the SIRT1/NF-κB/Caspase-1 signaling axis.
•N-acetylcysteine (NAC) reduced pyroptosis in human periodontal ligament fibroblasts.•NAC alleviated osteogenesis dysfunction in human periodontal ligament fibroblasts.•NAC may act by regulating the SIRT1/NF-κB/Caspase-1 signaling axis.•NAC may have potential application value in oral diseases.•SIRT1 may serve as a potential therapeutic target for periodontitis. |
---|---|
ISSN: | 0003-9969 1879-1506 |
DOI: | 10.1016/j.archoralbio.2023.105642 |