Insight into the Surface Reconstruction-Induced Structure and Electrochemical Performance Evolution for Ni-Rich Cathodes with Postannealing after Washing

Ni-rich layered LiNi x Co y Al z O2 (NCA, x ≥ 0.8) oxides have attracted wide attention as cathode materials for lithium-ion batteries due to their higher energy density and lower cost. However, the increase in the capacity for Ni-rich cathodes can cause faster capacity decay and increase sensitivit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-02, Vol.15 (7), p.9160-9170
Hauptverfasser: He, Feng-Rong, Tian, Zi-Qi, Xiang, Wei, Yang, Wen, Zheng, Bao-Ping, Cai, Jun-Yao, Guo, Xiao-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9170
container_issue 7
container_start_page 9160
container_title ACS applied materials & interfaces
container_volume 15
creator He, Feng-Rong
Tian, Zi-Qi
Xiang, Wei
Yang, Wen
Zheng, Bao-Ping
Cai, Jun-Yao
Guo, Xiao-Dong
description Ni-rich layered LiNi x Co y Al z O2 (NCA, x ≥ 0.8) oxides have attracted wide attention as cathode materials for lithium-ion batteries due to their higher energy density and lower cost. However, the increase in the capacity for Ni-rich cathodes can cause faster capacity decay and increase sensitivity to ambient air exposure during the storage process. Especially, the residual lithium on the surface of Ni-rich cathodes will cause severe flatulence during cycling which greatly reduces the safety performance of the battery. Washing is an effective method to reduce residual lithium, but it will seriously damage the surface phase structure of Ni-rich materials. Here, we introduce a designed method involving two steps, washing and high-temperature annealing, which can ingeniously modify the surface phase structure of Ni-rich cathodes. The results show that the residual lithium content can be significantly reduced. The thin NiO-like rock-salt phase formed on the surface of Ni-rich cathode annealed at 600 °C improves the diffusion kinetics of Li+, reduces the polarization, and improves the electrochemical performance of Ni-rich materials, while the thick spinel-like phase formed at 400 °C hinders the diffusion kinetics of Li+, significantly increases the polarization, and eventually leads to the structural degradation of Ni-rich materials. As a result, the discharge capacity of the cathode annealed at 600 °C still retains 174.48 mA h g–1 after 100 cycles, with a capacity retention of 92.04%, much larger than the cathode annealed at 400 °C, for which the discharge capacity drops to 107.77 mA h g–1, with a capacity retention of 65.78%.
doi_str_mv 10.1021/acsami.2c15909
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2775617192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775617192</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-b1ac9562d13f7ba345a54e1d5ed67d8278d244a359096c86048f39869ce588953</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS1ERUvhyhH5iJCytZ3YSY5otcBKValaEMdo1p40rhK7-A-Ij8K3xdtdeuPk8dPvPWnmEfKGsxVngl-AjrDYldBc9qx_Rs543zRVJ6R4_jQ3zSl5GeM9Y6oWTL4gp7VqVZHlGfmzddHeTYlalzxNE9LbHEbQSG9QexdTyDpZ76qtM1mjobePSg5IwRm6mVGn4PWEi9Uw02sMow8LuBKw-ennvPfSItErW91YPdE1pMkbjPSXTRO99jGBcwizdXcUxoSBfoc4ld8rcjLCHPH18T0n3z5uvq4_V5dfPm3XHy4rqGuWqh0H3UslDK_Hdgd1I0E2yI1Eo1rTibYzZVOo9-dRulOs6ca671SvUXZdL-tz8u6Q-xD8j4wxDYuNGucZHPocB9G2UvGW96KgqwOqg48x4Dg8BLtA-D1wNuzrGA51DMc6iuHtMTvvFjRP-L_7F-D9ASjG4d7n4Mqq_0v7C7dIl7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775617192</pqid></control><display><type>article</type><title>Insight into the Surface Reconstruction-Induced Structure and Electrochemical Performance Evolution for Ni-Rich Cathodes with Postannealing after Washing</title><source>ACS Publications</source><creator>He, Feng-Rong ; Tian, Zi-Qi ; Xiang, Wei ; Yang, Wen ; Zheng, Bao-Ping ; Cai, Jun-Yao ; Guo, Xiao-Dong</creator><creatorcontrib>He, Feng-Rong ; Tian, Zi-Qi ; Xiang, Wei ; Yang, Wen ; Zheng, Bao-Ping ; Cai, Jun-Yao ; Guo, Xiao-Dong</creatorcontrib><description>Ni-rich layered LiNi x Co y Al z O2 (NCA, x ≥ 0.8) oxides have attracted wide attention as cathode materials for lithium-ion batteries due to their higher energy density and lower cost. However, the increase in the capacity for Ni-rich cathodes can cause faster capacity decay and increase sensitivity to ambient air exposure during the storage process. Especially, the residual lithium on the surface of Ni-rich cathodes will cause severe flatulence during cycling which greatly reduces the safety performance of the battery. Washing is an effective method to reduce residual lithium, but it will seriously damage the surface phase structure of Ni-rich materials. Here, we introduce a designed method involving two steps, washing and high-temperature annealing, which can ingeniously modify the surface phase structure of Ni-rich cathodes. The results show that the residual lithium content can be significantly reduced. The thin NiO-like rock-salt phase formed on the surface of Ni-rich cathode annealed at 600 °C improves the diffusion kinetics of Li+, reduces the polarization, and improves the electrochemical performance of Ni-rich materials, while the thick spinel-like phase formed at 400 °C hinders the diffusion kinetics of Li+, significantly increases the polarization, and eventually leads to the structural degradation of Ni-rich materials. As a result, the discharge capacity of the cathode annealed at 600 °C still retains 174.48 mA h g–1 after 100 cycles, with a capacity retention of 92.04%, much larger than the cathode annealed at 400 °C, for which the discharge capacity drops to 107.77 mA h g–1, with a capacity retention of 65.78%.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c15909</identifier><identifier>PMID: 36762445</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-02, Vol.15 (7), p.9160-9170</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-b1ac9562d13f7ba345a54e1d5ed67d8278d244a359096c86048f39869ce588953</citedby><cites>FETCH-LOGICAL-a330t-b1ac9562d13f7ba345a54e1d5ed67d8278d244a359096c86048f39869ce588953</cites><orcidid>0000-0002-8667-5257 ; 0000-0003-2180-1985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c15909$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c15909$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36762445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Feng-Rong</creatorcontrib><creatorcontrib>Tian, Zi-Qi</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Zheng, Bao-Ping</creatorcontrib><creatorcontrib>Cai, Jun-Yao</creatorcontrib><creatorcontrib>Guo, Xiao-Dong</creatorcontrib><title>Insight into the Surface Reconstruction-Induced Structure and Electrochemical Performance Evolution for Ni-Rich Cathodes with Postannealing after Washing</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Ni-rich layered LiNi x Co y Al z O2 (NCA, x ≥ 0.8) oxides have attracted wide attention as cathode materials for lithium-ion batteries due to their higher energy density and lower cost. However, the increase in the capacity for Ni-rich cathodes can cause faster capacity decay and increase sensitivity to ambient air exposure during the storage process. Especially, the residual lithium on the surface of Ni-rich cathodes will cause severe flatulence during cycling which greatly reduces the safety performance of the battery. Washing is an effective method to reduce residual lithium, but it will seriously damage the surface phase structure of Ni-rich materials. Here, we introduce a designed method involving two steps, washing and high-temperature annealing, which can ingeniously modify the surface phase structure of Ni-rich cathodes. The results show that the residual lithium content can be significantly reduced. The thin NiO-like rock-salt phase formed on the surface of Ni-rich cathode annealed at 600 °C improves the diffusion kinetics of Li+, reduces the polarization, and improves the electrochemical performance of Ni-rich materials, while the thick spinel-like phase formed at 400 °C hinders the diffusion kinetics of Li+, significantly increases the polarization, and eventually leads to the structural degradation of Ni-rich materials. As a result, the discharge capacity of the cathode annealed at 600 °C still retains 174.48 mA h g–1 after 100 cycles, with a capacity retention of 92.04%, much larger than the cathode annealed at 400 °C, for which the discharge capacity drops to 107.77 mA h g–1, with a capacity retention of 65.78%.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAQxS1ERUvhyhH5iJCytZ3YSY5otcBKValaEMdo1p40rhK7-A-Ij8K3xdtdeuPk8dPvPWnmEfKGsxVngl-AjrDYldBc9qx_Rs543zRVJ6R4_jQ3zSl5GeM9Y6oWTL4gp7VqVZHlGfmzddHeTYlalzxNE9LbHEbQSG9QexdTyDpZ76qtM1mjobePSg5IwRm6mVGn4PWEi9Uw02sMow8LuBKw-ennvPfSItErW91YPdE1pMkbjPSXTRO99jGBcwizdXcUxoSBfoc4ld8rcjLCHPH18T0n3z5uvq4_V5dfPm3XHy4rqGuWqh0H3UslDK_Hdgd1I0E2yI1Eo1rTibYzZVOo9-dRulOs6ca671SvUXZdL-tz8u6Q-xD8j4wxDYuNGucZHPocB9G2UvGW96KgqwOqg48x4Dg8BLtA-D1wNuzrGA51DMc6iuHtMTvvFjRP-L_7F-D9ASjG4d7n4Mqq_0v7C7dIl7U</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>He, Feng-Rong</creator><creator>Tian, Zi-Qi</creator><creator>Xiang, Wei</creator><creator>Yang, Wen</creator><creator>Zheng, Bao-Ping</creator><creator>Cai, Jun-Yao</creator><creator>Guo, Xiao-Dong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8667-5257</orcidid><orcidid>https://orcid.org/0000-0003-2180-1985</orcidid></search><sort><creationdate>20230210</creationdate><title>Insight into the Surface Reconstruction-Induced Structure and Electrochemical Performance Evolution for Ni-Rich Cathodes with Postannealing after Washing</title><author>He, Feng-Rong ; Tian, Zi-Qi ; Xiang, Wei ; Yang, Wen ; Zheng, Bao-Ping ; Cai, Jun-Yao ; Guo, Xiao-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-b1ac9562d13f7ba345a54e1d5ed67d8278d244a359096c86048f39869ce588953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Feng-Rong</creatorcontrib><creatorcontrib>Tian, Zi-Qi</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Zheng, Bao-Ping</creatorcontrib><creatorcontrib>Cai, Jun-Yao</creatorcontrib><creatorcontrib>Guo, Xiao-Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Feng-Rong</au><au>Tian, Zi-Qi</au><au>Xiang, Wei</au><au>Yang, Wen</au><au>Zheng, Bao-Ping</au><au>Cai, Jun-Yao</au><au>Guo, Xiao-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the Surface Reconstruction-Induced Structure and Electrochemical Performance Evolution for Ni-Rich Cathodes with Postannealing after Washing</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>9160</spage><epage>9170</epage><pages>9160-9170</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Ni-rich layered LiNi x Co y Al z O2 (NCA, x ≥ 0.8) oxides have attracted wide attention as cathode materials for lithium-ion batteries due to their higher energy density and lower cost. However, the increase in the capacity for Ni-rich cathodes can cause faster capacity decay and increase sensitivity to ambient air exposure during the storage process. Especially, the residual lithium on the surface of Ni-rich cathodes will cause severe flatulence during cycling which greatly reduces the safety performance of the battery. Washing is an effective method to reduce residual lithium, but it will seriously damage the surface phase structure of Ni-rich materials. Here, we introduce a designed method involving two steps, washing and high-temperature annealing, which can ingeniously modify the surface phase structure of Ni-rich cathodes. The results show that the residual lithium content can be significantly reduced. The thin NiO-like rock-salt phase formed on the surface of Ni-rich cathode annealed at 600 °C improves the diffusion kinetics of Li+, reduces the polarization, and improves the electrochemical performance of Ni-rich materials, while the thick spinel-like phase formed at 400 °C hinders the diffusion kinetics of Li+, significantly increases the polarization, and eventually leads to the structural degradation of Ni-rich materials. As a result, the discharge capacity of the cathode annealed at 600 °C still retains 174.48 mA h g–1 after 100 cycles, with a capacity retention of 92.04%, much larger than the cathode annealed at 400 °C, for which the discharge capacity drops to 107.77 mA h g–1, with a capacity retention of 65.78%.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36762445</pmid><doi>10.1021/acsami.2c15909</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8667-5257</orcidid><orcidid>https://orcid.org/0000-0003-2180-1985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-02, Vol.15 (7), p.9160-9170
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2775617192
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Insight into the Surface Reconstruction-Induced Structure and Electrochemical Performance Evolution for Ni-Rich Cathodes with Postannealing after Washing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20Surface%20Reconstruction-Induced%20Structure%20and%20Electrochemical%20Performance%20Evolution%20for%20Ni-Rich%20Cathodes%20with%20Postannealing%20after%20Washing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=He,%20Feng-Rong&rft.date=2023-02-10&rft.volume=15&rft.issue=7&rft.spage=9160&rft.epage=9170&rft.pages=9160-9170&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c15909&rft_dat=%3Cproquest_cross%3E2775617192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775617192&rft_id=info:pmid/36762445&rfr_iscdi=true