Ambient temperature liquid salt electrolytes
Alkali metal salts usually have high melting points due to strong electrostatic interactions and solvents are needed to create ambient temperature liquid electrolytes. Here, we report on six phosphate-anion-based alkali metal salts, Li/Na/K, all of which are liquids at room temperature, with glass t...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2023-02, Vol.59 (18), p.262-2623 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2623 |
---|---|
container_issue | 18 |
container_start_page | 262 |
container_title | Chemical communications (Cambridge, England) |
container_volume | 59 |
creator | Bhowmick, Sourav Ahmed, Mukhtiar Filippov, Andrei Loaiza, Laura C Shah, Faiz Ullah Johansson, Patrik |
description | Alkali metal salts usually have high melting points due to strong electrostatic interactions and solvents are needed to create ambient temperature liquid electrolytes. Here, we report on six phosphate-anion-based alkali metal salts, Li/Na/K, all of which are liquids at room temperature, with glass transition temperatures ranging from −61 to −29 °C, and are thermally stable up to at least 225 °C. While the focus herein is on various physico-chemical properties, these salts also exhibit high anodic stabilities, up to 6 V
vs.
M/M
+
(M = Li/Na/K), and deliver some battery performance - at elevated temperatures as there are severe viscosity limitations at room-temperature. While the battery performance arguably is sub-par, solvent-free electrolytes based on alkali metal salts such as these should pave the way for conceptually different Li/Na/K-batteries, either by refined anion design or by using several salts to create eutectic mixtures.
Solvent-free liquids created by combining small alkali cations, Li
+
/Na
+
/K
+
, with organic anions open new pathways for electrolyte design. |
doi_str_mv | 10.1039/d3cc00318c |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2774898061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780323978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-ead3a1a66d21d01aa5e1f995ee3eac496bd2dc0f2cb0f70ae8c1ca2603405cf33</originalsourceid><addsrcrecordid>eNp10s1rFDEYBvAgiq3Vi3dlwUuRjr5JJpnkuEz9KBQ8-IG3kHnzjp2S2dkmGaT_fWfduoLQXBLIj4fwPmHsJYd3HKR9HyQigOQGH7FjLnVdqdr8fLw7K1s1slZH7FnO17AsrsxTdiR1oxphzDE7W4_dQJuyKjRuKfkyJ1rF4WYewir7WFYUCUua4m2h_Jw96X3M9OJ-P2HfP3741n6uLr98umjXlxXWRpeKfJCee62D4AG494p4b60ikuSxtroLIiD0AjvoG_BkkKMXGmQNCnspT9jXfW7-Tdu5c9s0jD7duskPLlEmn_DK4ZWPI6XsMjmhQy8tGadJgKs9BmcAOwfWaqMUt0baJfXswdTz4cfaTemXi2V2VikwCz_d822abmbKxY1DRorRb2iasxNNUxtrQPOFvvmPXk9z2iwjWpQBKaRtdoFv9wrTlHOi_vACDm5XpDuXbfunyHbBr-8j526kcKB_m1vAqz1IGQ-3_36CvAOKLaHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780323978</pqid></control><display><type>article</type><title>Ambient temperature liquid salt electrolytes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Bhowmick, Sourav ; Ahmed, Mukhtiar ; Filippov, Andrei ; Loaiza, Laura C ; Shah, Faiz Ullah ; Johansson, Patrik</creator><creatorcontrib>Bhowmick, Sourav ; Ahmed, Mukhtiar ; Filippov, Andrei ; Loaiza, Laura C ; Shah, Faiz Ullah ; Johansson, Patrik</creatorcontrib><description>Alkali metal salts usually have high melting points due to strong electrostatic interactions and solvents are needed to create ambient temperature liquid electrolytes. Here, we report on six phosphate-anion-based alkali metal salts, Li/Na/K, all of which are liquids at room temperature, with glass transition temperatures ranging from −61 to −29 °C, and are thermally stable up to at least 225 °C. While the focus herein is on various physico-chemical properties, these salts also exhibit high anodic stabilities, up to 6 V
vs.
M/M
+
(M = Li/Na/K), and deliver some battery performance - at elevated temperatures as there are severe viscosity limitations at room-temperature. While the battery performance arguably is sub-par, solvent-free electrolytes based on alkali metal salts such as these should pave the way for conceptually different Li/Na/K-batteries, either by refined anion design or by using several salts to create eutectic mixtures.
Solvent-free liquids created by combining small alkali cations, Li
+
/Na
+
/K
+
, with organic anions open new pathways for electrolyte design.</description><identifier>ISSN: 1359-7345</identifier><identifier>ISSN: 1364-548X</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/d3cc00318c</identifier><identifier>PMID: 36757288</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alkali metal salts ; Ambient temperature ; Anions ; Chemical properties ; Chemistry of Interfaces ; Electric batteries ; Electrolytes ; Glass transition ; Glass transition temperature ; Gränsytors kemi ; High temperature ; Lithium ; Melting points ; Room temperature ; Solvents ; Thermal stability</subject><ispartof>Chemical communications (Cambridge, England), 2023-02, Vol.59 (18), p.262-2623</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-ead3a1a66d21d01aa5e1f995ee3eac496bd2dc0f2cb0f70ae8c1ca2603405cf33</citedby><cites>FETCH-LOGICAL-c486t-ead3a1a66d21d01aa5e1f995ee3eac496bd2dc0f2cb0f70ae8c1ca2603405cf33</cites><orcidid>0000-0003-3652-7798 ; 0000-0002-6810-1882 ; 0000-0002-3164-4509 ; 0000-0002-9907-117X ; 0000-0001-7514-8606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,550,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36757288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-95508$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/534793$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhowmick, Sourav</creatorcontrib><creatorcontrib>Ahmed, Mukhtiar</creatorcontrib><creatorcontrib>Filippov, Andrei</creatorcontrib><creatorcontrib>Loaiza, Laura C</creatorcontrib><creatorcontrib>Shah, Faiz Ullah</creatorcontrib><creatorcontrib>Johansson, Patrik</creatorcontrib><title>Ambient temperature liquid salt electrolytes</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>Alkali metal salts usually have high melting points due to strong electrostatic interactions and solvents are needed to create ambient temperature liquid electrolytes. Here, we report on six phosphate-anion-based alkali metal salts, Li/Na/K, all of which are liquids at room temperature, with glass transition temperatures ranging from −61 to −29 °C, and are thermally stable up to at least 225 °C. While the focus herein is on various physico-chemical properties, these salts also exhibit high anodic stabilities, up to 6 V
vs.
M/M
+
(M = Li/Na/K), and deliver some battery performance - at elevated temperatures as there are severe viscosity limitations at room-temperature. While the battery performance arguably is sub-par, solvent-free electrolytes based on alkali metal salts such as these should pave the way for conceptually different Li/Na/K-batteries, either by refined anion design or by using several salts to create eutectic mixtures.
Solvent-free liquids created by combining small alkali cations, Li
+
/Na
+
/K
+
, with organic anions open new pathways for electrolyte design.</description><subject>Alkali metal salts</subject><subject>Ambient temperature</subject><subject>Anions</subject><subject>Chemical properties</subject><subject>Chemistry of Interfaces</subject><subject>Electric batteries</subject><subject>Electrolytes</subject><subject>Glass transition</subject><subject>Glass transition temperature</subject><subject>Gränsytors kemi</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Melting points</subject><subject>Room temperature</subject><subject>Solvents</subject><subject>Thermal stability</subject><issn>1359-7345</issn><issn>1364-548X</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp10s1rFDEYBvAgiq3Vi3dlwUuRjr5JJpnkuEz9KBQ8-IG3kHnzjp2S2dkmGaT_fWfduoLQXBLIj4fwPmHsJYd3HKR9HyQigOQGH7FjLnVdqdr8fLw7K1s1slZH7FnO17AsrsxTdiR1oxphzDE7W4_dQJuyKjRuKfkyJ1rF4WYewir7WFYUCUua4m2h_Jw96X3M9OJ-P2HfP3741n6uLr98umjXlxXWRpeKfJCee62D4AG494p4b60ikuSxtroLIiD0AjvoG_BkkKMXGmQNCnspT9jXfW7-Tdu5c9s0jD7duskPLlEmn_DK4ZWPI6XsMjmhQy8tGadJgKs9BmcAOwfWaqMUt0baJfXswdTz4cfaTemXi2V2VikwCz_d822abmbKxY1DRorRb2iasxNNUxtrQPOFvvmPXk9z2iwjWpQBKaRtdoFv9wrTlHOi_vACDm5XpDuXbfunyHbBr-8j526kcKB_m1vAqz1IGQ-3_36CvAOKLaHc</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Bhowmick, Sourav</creator><creator>Ahmed, Mukhtiar</creator><creator>Filippov, Andrei</creator><creator>Loaiza, Laura C</creator><creator>Shah, Faiz Ullah</creator><creator>Johansson, Patrik</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>ABBSD</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0003-3652-7798</orcidid><orcidid>https://orcid.org/0000-0002-6810-1882</orcidid><orcidid>https://orcid.org/0000-0002-3164-4509</orcidid><orcidid>https://orcid.org/0000-0002-9907-117X</orcidid><orcidid>https://orcid.org/0000-0001-7514-8606</orcidid></search><sort><creationdate>20230228</creationdate><title>Ambient temperature liquid salt electrolytes</title><author>Bhowmick, Sourav ; Ahmed, Mukhtiar ; Filippov, Andrei ; Loaiza, Laura C ; Shah, Faiz Ullah ; Johansson, Patrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-ead3a1a66d21d01aa5e1f995ee3eac496bd2dc0f2cb0f70ae8c1ca2603405cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkali metal salts</topic><topic>Ambient temperature</topic><topic>Anions</topic><topic>Chemical properties</topic><topic>Chemistry of Interfaces</topic><topic>Electric batteries</topic><topic>Electrolytes</topic><topic>Glass transition</topic><topic>Glass transition temperature</topic><topic>Gränsytors kemi</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Melting points</topic><topic>Room temperature</topic><topic>Solvents</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhowmick, Sourav</creatorcontrib><creatorcontrib>Ahmed, Mukhtiar</creatorcontrib><creatorcontrib>Filippov, Andrei</creatorcontrib><creatorcontrib>Loaiza, Laura C</creatorcontrib><creatorcontrib>Shah, Faiz Ullah</creatorcontrib><creatorcontrib>Johansson, Patrik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowmick, Sourav</au><au>Ahmed, Mukhtiar</au><au>Filippov, Andrei</au><au>Loaiza, Laura C</au><au>Shah, Faiz Ullah</au><au>Johansson, Patrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambient temperature liquid salt electrolytes</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2023-02-28</date><risdate>2023</risdate><volume>59</volume><issue>18</issue><spage>262</spage><epage>2623</epage><pages>262-2623</pages><issn>1359-7345</issn><issn>1364-548X</issn><eissn>1364-548X</eissn><abstract>Alkali metal salts usually have high melting points due to strong electrostatic interactions and solvents are needed to create ambient temperature liquid electrolytes. Here, we report on six phosphate-anion-based alkali metal salts, Li/Na/K, all of which are liquids at room temperature, with glass transition temperatures ranging from −61 to −29 °C, and are thermally stable up to at least 225 °C. While the focus herein is on various physico-chemical properties, these salts also exhibit high anodic stabilities, up to 6 V
vs.
M/M
+
(M = Li/Na/K), and deliver some battery performance - at elevated temperatures as there are severe viscosity limitations at room-temperature. While the battery performance arguably is sub-par, solvent-free electrolytes based on alkali metal salts such as these should pave the way for conceptually different Li/Na/K-batteries, either by refined anion design or by using several salts to create eutectic mixtures.
Solvent-free liquids created by combining small alkali cations, Li
+
/Na
+
/K
+
, with organic anions open new pathways for electrolyte design.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36757288</pmid><doi>10.1039/d3cc00318c</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3652-7798</orcidid><orcidid>https://orcid.org/0000-0002-6810-1882</orcidid><orcidid>https://orcid.org/0000-0002-3164-4509</orcidid><orcidid>https://orcid.org/0000-0002-9907-117X</orcidid><orcidid>https://orcid.org/0000-0001-7514-8606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-7345 |
ispartof | Chemical communications (Cambridge, England), 2023-02, Vol.59 (18), p.262-2623 |
issn | 1359-7345 1364-548X 1364-548X |
language | eng |
recordid | cdi_proquest_miscellaneous_2774898061 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection; SWEPUB Freely available online |
subjects | Alkali metal salts Ambient temperature Anions Chemical properties Chemistry of Interfaces Electric batteries Electrolytes Glass transition Glass transition temperature Gränsytors kemi High temperature Lithium Melting points Room temperature Solvents Thermal stability |
title | Ambient temperature liquid salt electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambient%20temperature%20liquid%20salt%20electrolytes&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Bhowmick,%20Sourav&rft.date=2023-02-28&rft.volume=59&rft.issue=18&rft.spage=262&rft.epage=2623&rft.pages=262-2623&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/d3cc00318c&rft_dat=%3Cproquest_swepu%3E2780323978%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780323978&rft_id=info:pmid/36757288&rfr_iscdi=true |