Kinetic‐Modulated Crystal Phase of Ru for Hydrogen Oxidation

Crystal‐phase‐engineering provides a powerful strategy for regulating the catalytic performance yet remains great challenge. Herein, the kinetic‐modulated crystal‐phase‐control of Ru nanosheet assemblies (Ru NAs) is demonstrated by simply altering the concentration of citric acid (CA). Detailed expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-05, Vol.19 (19), p.e2207038-n/a
Hauptverfasser: Zhang, Juntao, Cao, Maofeng, Li, Xiaotong, Xu, Yong, Zhao, Wei, Chen, Ligang, Chang, Yu‐Chung, Pao, Chih‐Wen, Hu, Zhiwei, Huang, Xiaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page e2207038
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Zhang, Juntao
Cao, Maofeng
Li, Xiaotong
Xu, Yong
Zhao, Wei
Chen, Ligang
Chang, Yu‐Chung
Pao, Chih‐Wen
Hu, Zhiwei
Huang, Xiaoqing
description Crystal‐phase‐engineering provides a powerful strategy for regulating the catalytic performance yet remains great challenge. Herein, the kinetic‐modulated crystal‐phase‐control of Ru nanosheet assemblies (Ru NAs) is demonstrated by simply altering the concentration of citric acid (CA). Detailed experimental results reveal that high concentration of CA retards the growth kinetics and thus leads to the formation of metastable face‐centered cubic (fcc) Ru NAs, while low concentration of CA results in the fast growth kinetics and the preferential formation of Ru NAs with stable hexagonal close packed (hcp) phase. Moreover, Ru NAs with different phases are used as catalyst for hydrogen oxidation reaction (HOR) to evaluate the effects of crystal phase on catalytic performance. Impressively, Ru NAs with fcc phase display a mass activity of 2.75 A mgRu−1 at 50 mV, which is much higher than those of Ru NAs with fcc/hcp (1.02 A mgRu−1) and hcp (0.74 A mgRu−1) phases. Theoretical calculations show that fcc Ru NAs display weaker adsorption toward *H and lower energy barrier toward the rate‐determining step (RDS) during HOR. This work provides a facile strategy for regulating the crystal phase of Ru nanocrystals, which may attract rapid interests of researchers in materials, chemistry, and catalysis. Here, it is found that the high concentration of CA retards the growth kinetics and thus leads to the formation of metastable face‐centered cubic (fcc) Ru NAs, while low concentration of CA results in the fast growth kinetics and the preferential formation of Ru NAs with stable hexagonal close packed (hcp) phase. Meanwhile, the fcc Ru exhibits higher HOR performance than that of hcp Ru.
doi_str_mv 10.1002/smll.202207038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2774895072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774895072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-5da51ddc74dceb0c14a9ae0c8f000c11982eec57e121d8369bfcd99a06fc42f93</originalsourceid><addsrcrecordid>eNqFkMtKAzEUQIMoVqtblzLgxs3UJPNIshGkqBWnVHysQ5qHTkknNZlBZ-cn-I1-iVNaK7hxlRs493A5ABwhOEAQ4rMwt3aAIcaQwIRugT2UoyTOKWbbmxnBHtgPYQZhgnBKdkEvyUmWYYT3wPltWem6lF8fn2OnGitqraKhb0MtbHT3IoKOnInum8g4H41a5d2zrqLJe6lEXbrqAOwYYYM-XL998HR1-TgcxcXk-mZ4UcQyRQmNMyUypJQkqZJ6CiVKBRMaSmog7H6IUay1zIhGGCma5GxqpGJMwNzIFBuW9MHpyrvw7rXRoebzMkhtrai0awLHhKSUZZDgDj35g85c46vuOo4pQmnSoUvhYEVJ70Lw2vCFL-fCtxxBvizLl2X5pmy3cLzWNtO5Vhv8J2UHsBXwVlrd_qPjD-Oi-JV_AxMqhTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811437749</pqid></control><display><type>article</type><title>Kinetic‐Modulated Crystal Phase of Ru for Hydrogen Oxidation</title><source>Wiley Journals</source><creator>Zhang, Juntao ; Cao, Maofeng ; Li, Xiaotong ; Xu, Yong ; Zhao, Wei ; Chen, Ligang ; Chang, Yu‐Chung ; Pao, Chih‐Wen ; Hu, Zhiwei ; Huang, Xiaoqing</creator><creatorcontrib>Zhang, Juntao ; Cao, Maofeng ; Li, Xiaotong ; Xu, Yong ; Zhao, Wei ; Chen, Ligang ; Chang, Yu‐Chung ; Pao, Chih‐Wen ; Hu, Zhiwei ; Huang, Xiaoqing</creatorcontrib><description>Crystal‐phase‐engineering provides a powerful strategy for regulating the catalytic performance yet remains great challenge. Herein, the kinetic‐modulated crystal‐phase‐control of Ru nanosheet assemblies (Ru NAs) is demonstrated by simply altering the concentration of citric acid (CA). Detailed experimental results reveal that high concentration of CA retards the growth kinetics and thus leads to the formation of metastable face‐centered cubic (fcc) Ru NAs, while low concentration of CA results in the fast growth kinetics and the preferential formation of Ru NAs with stable hexagonal close packed (hcp) phase. Moreover, Ru NAs with different phases are used as catalyst for hydrogen oxidation reaction (HOR) to evaluate the effects of crystal phase on catalytic performance. Impressively, Ru NAs with fcc phase display a mass activity of 2.75 A mgRu−1 at 50 mV, which is much higher than those of Ru NAs with fcc/hcp (1.02 A mgRu−1) and hcp (0.74 A mgRu−1) phases. Theoretical calculations show that fcc Ru NAs display weaker adsorption toward *H and lower energy barrier toward the rate‐determining step (RDS) during HOR. This work provides a facile strategy for regulating the crystal phase of Ru nanocrystals, which may attract rapid interests of researchers in materials, chemistry, and catalysis. Here, it is found that the high concentration of CA retards the growth kinetics and thus leads to the formation of metastable face‐centered cubic (fcc) Ru NAs, while low concentration of CA results in the fast growth kinetics and the preferential formation of Ru NAs with stable hexagonal close packed (hcp) phase. Meanwhile, the fcc Ru exhibits higher HOR performance than that of hcp Ru.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207038</identifier><identifier>PMID: 36755212</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Citric acid ; crystal‐phase‐engineered ; Hydrogen ; hydrogen oxidation reaction ; Kinetics ; kinetic‐modulated ; metastable phase ; Nanocrystals ; Nanotechnology ; Oxidation ; ruthenium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (19), p.e2207038-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-5da51ddc74dceb0c14a9ae0c8f000c11982eec57e121d8369bfcd99a06fc42f93</citedby><cites>FETCH-LOGICAL-c4138-5da51ddc74dceb0c14a9ae0c8f000c11982eec57e121d8369bfcd99a06fc42f93</cites><orcidid>0000-0001-5115-6492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202207038$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202207038$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36755212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Juntao</creatorcontrib><creatorcontrib>Cao, Maofeng</creatorcontrib><creatorcontrib>Li, Xiaotong</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Chen, Ligang</creatorcontrib><creatorcontrib>Chang, Yu‐Chung</creatorcontrib><creatorcontrib>Pao, Chih‐Wen</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><title>Kinetic‐Modulated Crystal Phase of Ru for Hydrogen Oxidation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Crystal‐phase‐engineering provides a powerful strategy for regulating the catalytic performance yet remains great challenge. Herein, the kinetic‐modulated crystal‐phase‐control of Ru nanosheet assemblies (Ru NAs) is demonstrated by simply altering the concentration of citric acid (CA). Detailed experimental results reveal that high concentration of CA retards the growth kinetics and thus leads to the formation of metastable face‐centered cubic (fcc) Ru NAs, while low concentration of CA results in the fast growth kinetics and the preferential formation of Ru NAs with stable hexagonal close packed (hcp) phase. Moreover, Ru NAs with different phases are used as catalyst for hydrogen oxidation reaction (HOR) to evaluate the effects of crystal phase on catalytic performance. Impressively, Ru NAs with fcc phase display a mass activity of 2.75 A mgRu−1 at 50 mV, which is much higher than those of Ru NAs with fcc/hcp (1.02 A mgRu−1) and hcp (0.74 A mgRu−1) phases. Theoretical calculations show that fcc Ru NAs display weaker adsorption toward *H and lower energy barrier toward the rate‐determining step (RDS) during HOR. This work provides a facile strategy for regulating the crystal phase of Ru nanocrystals, which may attract rapid interests of researchers in materials, chemistry, and catalysis. Here, it is found that the high concentration of CA retards the growth kinetics and thus leads to the formation of metastable face‐centered cubic (fcc) Ru NAs, while low concentration of CA results in the fast growth kinetics and the preferential formation of Ru NAs with stable hexagonal close packed (hcp) phase. Meanwhile, the fcc Ru exhibits higher HOR performance than that of hcp Ru.</description><subject>Catalysis</subject><subject>Citric acid</subject><subject>crystal‐phase‐engineered</subject><subject>Hydrogen</subject><subject>hydrogen oxidation reaction</subject><subject>Kinetics</subject><subject>kinetic‐modulated</subject><subject>metastable phase</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>ruthenium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUQIMoVqtblzLgxs3UJPNIshGkqBWnVHysQ5qHTkknNZlBZ-cn-I1-iVNaK7hxlRs493A5ABwhOEAQ4rMwt3aAIcaQwIRugT2UoyTOKWbbmxnBHtgPYQZhgnBKdkEvyUmWYYT3wPltWem6lF8fn2OnGitqraKhb0MtbHT3IoKOnInum8g4H41a5d2zrqLJe6lEXbrqAOwYYYM-XL998HR1-TgcxcXk-mZ4UcQyRQmNMyUypJQkqZJ6CiVKBRMaSmog7H6IUay1zIhGGCma5GxqpGJMwNzIFBuW9MHpyrvw7rXRoebzMkhtrai0awLHhKSUZZDgDj35g85c46vuOo4pQmnSoUvhYEVJ70Lw2vCFL-fCtxxBvizLl2X5pmy3cLzWNtO5Vhv8J2UHsBXwVlrd_qPjD-Oi-JV_AxMqhTM</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhang, Juntao</creator><creator>Cao, Maofeng</creator><creator>Li, Xiaotong</creator><creator>Xu, Yong</creator><creator>Zhao, Wei</creator><creator>Chen, Ligang</creator><creator>Chang, Yu‐Chung</creator><creator>Pao, Chih‐Wen</creator><creator>Hu, Zhiwei</creator><creator>Huang, Xiaoqing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5115-6492</orcidid></search><sort><creationdate>20230501</creationdate><title>Kinetic‐Modulated Crystal Phase of Ru for Hydrogen Oxidation</title><author>Zhang, Juntao ; Cao, Maofeng ; Li, Xiaotong ; Xu, Yong ; Zhao, Wei ; Chen, Ligang ; Chang, Yu‐Chung ; Pao, Chih‐Wen ; Hu, Zhiwei ; Huang, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-5da51ddc74dceb0c14a9ae0c8f000c11982eec57e121d8369bfcd99a06fc42f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysis</topic><topic>Citric acid</topic><topic>crystal‐phase‐engineered</topic><topic>Hydrogen</topic><topic>hydrogen oxidation reaction</topic><topic>Kinetics</topic><topic>kinetic‐modulated</topic><topic>metastable phase</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>ruthenium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Juntao</creatorcontrib><creatorcontrib>Cao, Maofeng</creatorcontrib><creatorcontrib>Li, Xiaotong</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Chen, Ligang</creatorcontrib><creatorcontrib>Chang, Yu‐Chung</creatorcontrib><creatorcontrib>Pao, Chih‐Wen</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Juntao</au><au>Cao, Maofeng</au><au>Li, Xiaotong</au><au>Xu, Yong</au><au>Zhao, Wei</au><au>Chen, Ligang</au><au>Chang, Yu‐Chung</au><au>Pao, Chih‐Wen</au><au>Hu, Zhiwei</au><au>Huang, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic‐Modulated Crystal Phase of Ru for Hydrogen Oxidation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>19</issue><spage>e2207038</spage><epage>n/a</epage><pages>e2207038-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Crystal‐phase‐engineering provides a powerful strategy for regulating the catalytic performance yet remains great challenge. Herein, the kinetic‐modulated crystal‐phase‐control of Ru nanosheet assemblies (Ru NAs) is demonstrated by simply altering the concentration of citric acid (CA). Detailed experimental results reveal that high concentration of CA retards the growth kinetics and thus leads to the formation of metastable face‐centered cubic (fcc) Ru NAs, while low concentration of CA results in the fast growth kinetics and the preferential formation of Ru NAs with stable hexagonal close packed (hcp) phase. Moreover, Ru NAs with different phases are used as catalyst for hydrogen oxidation reaction (HOR) to evaluate the effects of crystal phase on catalytic performance. Impressively, Ru NAs with fcc phase display a mass activity of 2.75 A mgRu−1 at 50 mV, which is much higher than those of Ru NAs with fcc/hcp (1.02 A mgRu−1) and hcp (0.74 A mgRu−1) phases. Theoretical calculations show that fcc Ru NAs display weaker adsorption toward *H and lower energy barrier toward the rate‐determining step (RDS) during HOR. This work provides a facile strategy for regulating the crystal phase of Ru nanocrystals, which may attract rapid interests of researchers in materials, chemistry, and catalysis. Here, it is found that the high concentration of CA retards the growth kinetics and thus leads to the formation of metastable face‐centered cubic (fcc) Ru NAs, while low concentration of CA results in the fast growth kinetics and the preferential formation of Ru NAs with stable hexagonal close packed (hcp) phase. Meanwhile, the fcc Ru exhibits higher HOR performance than that of hcp Ru.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36755212</pmid><doi>10.1002/smll.202207038</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5115-6492</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-05, Vol.19 (19), p.e2207038-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2774895072
source Wiley Journals
subjects Catalysis
Citric acid
crystal‐phase‐engineered
Hydrogen
hydrogen oxidation reaction
Kinetics
kinetic‐modulated
metastable phase
Nanocrystals
Nanotechnology
Oxidation
ruthenium
title Kinetic‐Modulated Crystal Phase of Ru for Hydrogen Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%E2%80%90Modulated%20Crystal%20Phase%20of%20Ru%20for%20Hydrogen%20Oxidation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Juntao&rft.date=2023-05-01&rft.volume=19&rft.issue=19&rft.spage=e2207038&rft.epage=n/a&rft.pages=e2207038-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207038&rft_dat=%3Cproquest_cross%3E2774895072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811437749&rft_id=info:pmid/36755212&rfr_iscdi=true