Structural optimization using evolutionary algorithms
The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine t...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2002-03, Vol.80 (7), p.571-589 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 589 |
---|---|
container_issue | 7 |
container_start_page | 571 |
container_title | Computers & structures |
container_volume | 80 |
creator | Lagaros, Nikolaos D. Papadrakakis, Manolis Kokossalakis, George |
description | The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems. |
doi_str_mv | 10.1016/S0045-7949(02)00027-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27747433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794902000275</els_id><sourcerecordid>27747433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-29d5f81afa223a1c7bdf67b1cb66bb575f6d849783472bcdd377ac6f3f00da593</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKs_QZiV6GI078ysREp9QMFFdR0yedTIzKQmmYL-eqetuNXV5cJ3DpwPgHMErxFE_GYJIWWlqGl9CfEVhBCLkh2ACapEXWJMySGY_CLH4CSl9xHiFMIJYMscB52HqNoirLPv_JfKPvTFkHy_KuwmtMP2V_GzUO0qRJ_funQKjpxqkz37uVPwej9_mT2Wi-eHp9ndotS0wrnEtWGuQsopjIlCWjTGcdEg3XDeNEwwx01Fa1ERKnCjjSFCKM0dcRAaxWoyBRf73nUMH4NNWXY-adu2qrdhSBILQQUl5H8gotUIsj2oY0gpWifX0XfjOomg3NqUO5tyq0pCLHc2JRtzt_ucHeduvI0yaW97bY2PVmdpgv-j4Rudfn0j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27747148</pqid></control><display><type>article</type><title>Structural optimization using evolutionary algorithms</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lagaros, Nikolaos D. ; Papadrakakis, Manolis ; Kokossalakis, George</creator><creatorcontrib>Lagaros, Nikolaos D. ; Papadrakakis, Manolis ; Kokossalakis, George</creatorcontrib><description>The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/S0045-7949(02)00027-5</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Evolution strategies ; Genetic algorithms ; Handling of constraints ; Sequential quadratic programming ; Structural optimization</subject><ispartof>Computers & structures, 2002-03, Vol.80 (7), p.571-589</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-29d5f81afa223a1c7bdf67b1cb66bb575f6d849783472bcdd377ac6f3f00da593</citedby><cites>FETCH-LOGICAL-c482t-29d5f81afa223a1c7bdf67b1cb66bb575f6d849783472bcdd377ac6f3f00da593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7949(02)00027-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lagaros, Nikolaos D.</creatorcontrib><creatorcontrib>Papadrakakis, Manolis</creatorcontrib><creatorcontrib>Kokossalakis, George</creatorcontrib><title>Structural optimization using evolutionary algorithms</title><title>Computers & structures</title><description>The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.</description><subject>Evolution strategies</subject><subject>Genetic algorithms</subject><subject>Handling of constraints</subject><subject>Sequential quadratic programming</subject><subject>Structural optimization</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKs_QZiV6GI078ysREp9QMFFdR0yedTIzKQmmYL-eqetuNXV5cJ3DpwPgHMErxFE_GYJIWWlqGl9CfEVhBCLkh2ACapEXWJMySGY_CLH4CSl9xHiFMIJYMscB52HqNoirLPv_JfKPvTFkHy_KuwmtMP2V_GzUO0qRJ_funQKjpxqkz37uVPwej9_mT2Wi-eHp9ndotS0wrnEtWGuQsopjIlCWjTGcdEg3XDeNEwwx01Fa1ERKnCjjSFCKM0dcRAaxWoyBRf73nUMH4NNWXY-adu2qrdhSBILQQUl5H8gotUIsj2oY0gpWifX0XfjOomg3NqUO5tyq0pCLHc2JRtzt_ucHeduvI0yaW97bY2PVmdpgv-j4Rudfn0j</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Lagaros, Nikolaos D.</creator><creator>Papadrakakis, Manolis</creator><creator>Kokossalakis, George</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7SM</scope></search><sort><creationdate>20020301</creationdate><title>Structural optimization using evolutionary algorithms</title><author>Lagaros, Nikolaos D. ; Papadrakakis, Manolis ; Kokossalakis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-29d5f81afa223a1c7bdf67b1cb66bb575f6d849783472bcdd377ac6f3f00da593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Evolution strategies</topic><topic>Genetic algorithms</topic><topic>Handling of constraints</topic><topic>Sequential quadratic programming</topic><topic>Structural optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagaros, Nikolaos D.</creatorcontrib><creatorcontrib>Papadrakakis, Manolis</creatorcontrib><creatorcontrib>Kokossalakis, George</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagaros, Nikolaos D.</au><au>Papadrakakis, Manolis</au><au>Kokossalakis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural optimization using evolutionary algorithms</atitle><jtitle>Computers & structures</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>80</volume><issue>7</issue><spage>571</spage><epage>589</epage><pages>571-589</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0045-7949(02)00027-5</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2002-03, Vol.80 (7), p.571-589 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_27747433 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Evolution strategies Genetic algorithms Handling of constraints Sequential quadratic programming Structural optimization |
title | Structural optimization using evolutionary algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20optimization%20using%20evolutionary%20algorithms&rft.jtitle=Computers%20&%20structures&rft.au=Lagaros,%20Nikolaos%20D.&rft.date=2002-03-01&rft.volume=80&rft.issue=7&rft.spage=571&rft.epage=589&rft.pages=571-589&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/S0045-7949(02)00027-5&rft_dat=%3Cproquest_cross%3E27747433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27747148&rft_id=info:pmid/&rft_els_id=S0045794902000275&rfr_iscdi=true |