Structural optimization using evolutionary algorithms

The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2002-03, Vol.80 (7), p.571-589
Hauptverfasser: Lagaros, Nikolaos D., Papadrakakis, Manolis, Kokossalakis, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue 7
container_start_page 571
container_title Computers & structures
container_volume 80
creator Lagaros, Nikolaos D.
Papadrakakis, Manolis
Kokossalakis, George
description The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.
doi_str_mv 10.1016/S0045-7949(02)00027-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27747433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794902000275</els_id><sourcerecordid>27747433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-29d5f81afa223a1c7bdf67b1cb66bb575f6d849783472bcdd377ac6f3f00da593</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKs_QZiV6GI078ysREp9QMFFdR0yedTIzKQmmYL-eqetuNXV5cJ3DpwPgHMErxFE_GYJIWWlqGl9CfEVhBCLkh2ACapEXWJMySGY_CLH4CSl9xHiFMIJYMscB52HqNoirLPv_JfKPvTFkHy_KuwmtMP2V_GzUO0qRJ_funQKjpxqkz37uVPwej9_mT2Wi-eHp9ndotS0wrnEtWGuQsopjIlCWjTGcdEg3XDeNEwwx01Fa1ERKnCjjSFCKM0dcRAaxWoyBRf73nUMH4NNWXY-adu2qrdhSBILQQUl5H8gotUIsj2oY0gpWifX0XfjOomg3NqUO5tyq0pCLHc2JRtzt_ucHeduvI0yaW97bY2PVmdpgv-j4Rudfn0j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27747148</pqid></control><display><type>article</type><title>Structural optimization using evolutionary algorithms</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lagaros, Nikolaos D. ; Papadrakakis, Manolis ; Kokossalakis, George</creator><creatorcontrib>Lagaros, Nikolaos D. ; Papadrakakis, Manolis ; Kokossalakis, George</creatorcontrib><description>The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/S0045-7949(02)00027-5</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Evolution strategies ; Genetic algorithms ; Handling of constraints ; Sequential quadratic programming ; Structural optimization</subject><ispartof>Computers &amp; structures, 2002-03, Vol.80 (7), p.571-589</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-29d5f81afa223a1c7bdf67b1cb66bb575f6d849783472bcdd377ac6f3f00da593</citedby><cites>FETCH-LOGICAL-c482t-29d5f81afa223a1c7bdf67b1cb66bb575f6d849783472bcdd377ac6f3f00da593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7949(02)00027-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lagaros, Nikolaos D.</creatorcontrib><creatorcontrib>Papadrakakis, Manolis</creatorcontrib><creatorcontrib>Kokossalakis, George</creatorcontrib><title>Structural optimization using evolutionary algorithms</title><title>Computers &amp; structures</title><description>The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.</description><subject>Evolution strategies</subject><subject>Genetic algorithms</subject><subject>Handling of constraints</subject><subject>Sequential quadratic programming</subject><subject>Structural optimization</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKs_QZiV6GI078ysREp9QMFFdR0yedTIzKQmmYL-eqetuNXV5cJ3DpwPgHMErxFE_GYJIWWlqGl9CfEVhBCLkh2ACapEXWJMySGY_CLH4CSl9xHiFMIJYMscB52HqNoirLPv_JfKPvTFkHy_KuwmtMP2V_GzUO0qRJ_funQKjpxqkz37uVPwej9_mT2Wi-eHp9ndotS0wrnEtWGuQsopjIlCWjTGcdEg3XDeNEwwx01Fa1ERKnCjjSFCKM0dcRAaxWoyBRf73nUMH4NNWXY-adu2qrdhSBILQQUl5H8gotUIsj2oY0gpWifX0XfjOomg3NqUO5tyq0pCLHc2JRtzt_ucHeduvI0yaW97bY2PVmdpgv-j4Rudfn0j</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Lagaros, Nikolaos D.</creator><creator>Papadrakakis, Manolis</creator><creator>Kokossalakis, George</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7SM</scope></search><sort><creationdate>20020301</creationdate><title>Structural optimization using evolutionary algorithms</title><author>Lagaros, Nikolaos D. ; Papadrakakis, Manolis ; Kokossalakis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-29d5f81afa223a1c7bdf67b1cb66bb575f6d849783472bcdd377ac6f3f00da593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Evolution strategies</topic><topic>Genetic algorithms</topic><topic>Handling of constraints</topic><topic>Sequential quadratic programming</topic><topic>Structural optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagaros, Nikolaos D.</creatorcontrib><creatorcontrib>Papadrakakis, Manolis</creatorcontrib><creatorcontrib>Kokossalakis, George</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagaros, Nikolaos D.</au><au>Papadrakakis, Manolis</au><au>Kokossalakis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural optimization using evolutionary algorithms</atitle><jtitle>Computers &amp; structures</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>80</volume><issue>7</issue><spage>571</spage><epage>589</epage><pages>571-589</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are implemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0045-7949(02)00027-5</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2002-03, Vol.80 (7), p.571-589
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_27747433
source ScienceDirect Journals (5 years ago - present)
subjects Evolution strategies
Genetic algorithms
Handling of constraints
Sequential quadratic programming
Structural optimization
title Structural optimization using evolutionary algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20optimization%20using%20evolutionary%20algorithms&rft.jtitle=Computers%20&%20structures&rft.au=Lagaros,%20Nikolaos%20D.&rft.date=2002-03-01&rft.volume=80&rft.issue=7&rft.spage=571&rft.epage=589&rft.pages=571-589&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/S0045-7949(02)00027-5&rft_dat=%3Cproquest_cross%3E27747433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27747148&rft_id=info:pmid/&rft_els_id=S0045794902000275&rfr_iscdi=true