Thick Lévy plates re-visited

This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2002-01, Vol.39 (1), p.127-144
Hauptverfasser: Lee, K.H., Lim, G.T., Wang, C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 127
container_title International journal of solids and structures
container_volume 39
creator Lee, K.H.
Lim, G.T.
Wang, C.M.
description This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort. Numerical plate solutions are then determined from these relationships and the validity of these results is verified using other known results and those generated using the abaqus software. It is through this study that the only analytical Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differences will also be substantiated by numerical comparison.
doi_str_mv 10.1016/S0020-7683(01)00205-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27746473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768301002050</els_id><sourcerecordid>27746473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4454edb422b290003bf98103cdf4677e3ed4d4909339977353299bf1148be73c3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuPUOhG0UX0JjczmaxESv2BggvrOsxk7mB02qnJtNBH8jl8Mac_6NLV5cJ3zuEcxgYCrgWI9OYFQALXaYaXIK42T8LhgPVEpg2XQqWHrPeLHLOTGN8BQKGBHhtM37z7GE6-v1br4aLOW4rDQHzlo2-pPGVHVV5HOtvfPnu9H09Hj3zy_PA0uptwh2nWcqUSRWWhpCyk6ayxqEwmAF1ZqVRrQipVqQwYRGO0xgSlMUUlhMoK0uiwzy52vovQfC4ptnbmo6O6zufULKOVWqtUaezAZAe60MQYqLKL4Gd5WFsBdjOG3Y5hN00tCLsdw0KnO98H5NHldRXyufPxT4wKQKPsuNsdR13bladgo_M0d1T6QK61ZeP_SfoBI1Zwhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27746473</pqid></control><display><type>article</type><title>Thick Lévy plates re-visited</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, K.H. ; Lim, G.T. ; Wang, C.M.</creator><creatorcontrib>Lee, K.H. ; Lim, G.T. ; Wang, C.M.</creatorcontrib><description>This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort. Numerical plate solutions are then determined from these relationships and the validity of these results is verified using other known results and those generated using the abaqus software. It is through this study that the only analytical Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differences will also be substantiated by numerical comparison.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(01)00205-0</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bending ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lévy solutions ; Mindlin plate theory ; Physics ; Reissner plate theory ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Thick plates</subject><ispartof>International journal of solids and structures, 2002-01, Vol.39 (1), p.127-144</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4454edb422b290003bf98103cdf4677e3ed4d4909339977353299bf1148be73c3</citedby><cites>FETCH-LOGICAL-c368t-4454edb422b290003bf98103cdf4677e3ed4d4909339977353299bf1148be73c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(01)00205-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13400732$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, K.H.</creatorcontrib><creatorcontrib>Lim, G.T.</creatorcontrib><creatorcontrib>Wang, C.M.</creatorcontrib><title>Thick Lévy plates re-visited</title><title>International journal of solids and structures</title><description>This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort. Numerical plate solutions are then determined from these relationships and the validity of these results is verified using other known results and those generated using the abaqus software. It is through this study that the only analytical Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differences will also be substantiated by numerical comparison.</description><subject>Bending</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lévy solutions</subject><subject>Mindlin plate theory</subject><subject>Physics</subject><subject>Reissner plate theory</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Thick plates</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuPUOhG0UX0JjczmaxESv2BggvrOsxk7mB02qnJtNBH8jl8Mac_6NLV5cJ3zuEcxgYCrgWI9OYFQALXaYaXIK42T8LhgPVEpg2XQqWHrPeLHLOTGN8BQKGBHhtM37z7GE6-v1br4aLOW4rDQHzlo2-pPGVHVV5HOtvfPnu9H09Hj3zy_PA0uptwh2nWcqUSRWWhpCyk6ayxqEwmAF1ZqVRrQipVqQwYRGO0xgSlMUUlhMoK0uiwzy52vovQfC4ptnbmo6O6zufULKOVWqtUaezAZAe60MQYqLKL4Gd5WFsBdjOG3Y5hN00tCLsdw0KnO98H5NHldRXyufPxT4wKQKPsuNsdR13bladgo_M0d1T6QK61ZeP_SfoBI1Zwhw</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Lee, K.H.</creator><creator>Lim, G.T.</creator><creator>Wang, C.M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020101</creationdate><title>Thick Lévy plates re-visited</title><author>Lee, K.H. ; Lim, G.T. ; Wang, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4454edb422b290003bf98103cdf4677e3ed4d4909339977353299bf1148be73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bending</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lévy solutions</topic><topic>Mindlin plate theory</topic><topic>Physics</topic><topic>Reissner plate theory</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Thick plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, K.H.</creatorcontrib><creatorcontrib>Lim, G.T.</creatorcontrib><creatorcontrib>Wang, C.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, K.H.</au><au>Lim, G.T.</au><au>Wang, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thick Lévy plates re-visited</atitle><jtitle>International journal of solids and structures</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>39</volume><issue>1</issue><spage>127</spage><epage>144</epage><pages>127-144</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort. Numerical plate solutions are then determined from these relationships and the validity of these results is verified using other known results and those generated using the abaqus software. It is through this study that the only analytical Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differences will also be substantiated by numerical comparison.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(01)00205-0</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2002-01, Vol.39 (1), p.127-144
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_27746473
source ScienceDirect Journals (5 years ago - present)
subjects Bending
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lévy solutions
Mindlin plate theory
Physics
Reissner plate theory
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Thick plates
title Thick Lévy plates re-visited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thick%20L%C3%A9vy%20plates%20re-visited&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Lee,%20K.H.&rft.date=2002-01-01&rft.volume=39&rft.issue=1&rft.spage=127&rft.epage=144&rft.pages=127-144&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(01)00205-0&rft_dat=%3Cproquest_cross%3E27746473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27746473&rft_id=info:pmid/&rft_els_id=S0020768301002050&rfr_iscdi=true