Thick Lévy plates re-visited
This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bend...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2002-01, Vol.39 (1), p.127-144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 1 |
container_start_page | 127 |
container_title | International journal of solids and structures |
container_volume | 39 |
creator | Lee, K.H. Lim, G.T. Wang, C.M. |
description | This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort. Numerical plate solutions are then determined from these relationships and the validity of these results is verified using other known results and those generated using the
abaqus software. It is through this study that the only analytical Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differences will also be substantiated by numerical comparison. |
doi_str_mv | 10.1016/S0020-7683(01)00205-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27746473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768301002050</els_id><sourcerecordid>27746473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4454edb422b290003bf98103cdf4677e3ed4d4909339977353299bf1148be73c3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuPUOhG0UX0JjczmaxESv2BggvrOsxk7mB02qnJtNBH8jl8Mac_6NLV5cJ3zuEcxgYCrgWI9OYFQALXaYaXIK42T8LhgPVEpg2XQqWHrPeLHLOTGN8BQKGBHhtM37z7GE6-v1br4aLOW4rDQHzlo2-pPGVHVV5HOtvfPnu9H09Hj3zy_PA0uptwh2nWcqUSRWWhpCyk6ayxqEwmAF1ZqVRrQipVqQwYRGO0xgSlMUUlhMoK0uiwzy52vovQfC4ptnbmo6O6zufULKOVWqtUaezAZAe60MQYqLKL4Gd5WFsBdjOG3Y5hN00tCLsdw0KnO98H5NHldRXyufPxT4wKQKPsuNsdR13bladgo_M0d1T6QK61ZeP_SfoBI1Zwhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27746473</pqid></control><display><type>article</type><title>Thick Lévy plates re-visited</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, K.H. ; Lim, G.T. ; Wang, C.M.</creator><creatorcontrib>Lee, K.H. ; Lim, G.T. ; Wang, C.M.</creatorcontrib><description>This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort. Numerical plate solutions are then determined from these relationships and the validity of these results is verified using other known results and those generated using the
abaqus software. It is through this study that the only analytical Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differences will also be substantiated by numerical comparison.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(01)00205-0</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bending ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lévy solutions ; Mindlin plate theory ; Physics ; Reissner plate theory ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Thick plates</subject><ispartof>International journal of solids and structures, 2002-01, Vol.39 (1), p.127-144</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4454edb422b290003bf98103cdf4677e3ed4d4909339977353299bf1148be73c3</citedby><cites>FETCH-LOGICAL-c368t-4454edb422b290003bf98103cdf4677e3ed4d4909339977353299bf1148be73c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(01)00205-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13400732$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, K.H.</creatorcontrib><creatorcontrib>Lim, G.T.</creatorcontrib><creatorcontrib>Wang, C.M.</creatorcontrib><title>Thick Lévy plates re-visited</title><title>International journal of solids and structures</title><description>This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort. Numerical plate solutions are then determined from these relationships and the validity of these results is verified using other known results and those generated using the
abaqus software. It is through this study that the only analytical Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differences will also be substantiated by numerical comparison.</description><subject>Bending</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lévy solutions</subject><subject>Mindlin plate theory</subject><subject>Physics</subject><subject>Reissner plate theory</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Thick plates</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuPUOhG0UX0JjczmaxESv2BggvrOsxk7mB02qnJtNBH8jl8Mac_6NLV5cJ3zuEcxgYCrgWI9OYFQALXaYaXIK42T8LhgPVEpg2XQqWHrPeLHLOTGN8BQKGBHhtM37z7GE6-v1br4aLOW4rDQHzlo2-pPGVHVV5HOtvfPnu9H09Hj3zy_PA0uptwh2nWcqUSRWWhpCyk6ayxqEwmAF1ZqVRrQipVqQwYRGO0xgSlMUUlhMoK0uiwzy52vovQfC4ptnbmo6O6zufULKOVWqtUaezAZAe60MQYqLKL4Gd5WFsBdjOG3Y5hN00tCLsdw0KnO98H5NHldRXyufPxT4wKQKPsuNsdR13bladgo_M0d1T6QK61ZeP_SfoBI1Zwhw</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Lee, K.H.</creator><creator>Lim, G.T.</creator><creator>Wang, C.M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020101</creationdate><title>Thick Lévy plates re-visited</title><author>Lee, K.H. ; Lim, G.T. ; Wang, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4454edb422b290003bf98103cdf4677e3ed4d4909339977353299bf1148be73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bending</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lévy solutions</topic><topic>Mindlin plate theory</topic><topic>Physics</topic><topic>Reissner plate theory</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Thick plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, K.H.</creatorcontrib><creatorcontrib>Lim, G.T.</creatorcontrib><creatorcontrib>Wang, C.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, K.H.</au><au>Lim, G.T.</au><au>Wang, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thick Lévy plates re-visited</atitle><jtitle>International journal of solids and structures</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>39</volume><issue>1</issue><spage>127</spage><epage>144</epage><pages>127-144</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>This paper is concerned with the bending problem of Lévy plates which are simply supported on two opposite edges with any combination of simply supported, clamped or free conditions at the remaining two edges. This study attempts to solve thick Lévy plate problems in a novel way by establishing bending relationships that allow the prediction of Mindlin plate results using the corresponding Kirchhoff solutions. Based on the concept of load equivalence, these relationships obviate the need for complicated thick plate analyses that involve significant computation time and effort. Numerical plate solutions are then determined from these relationships and the validity of these results is verified using other known results and those generated using the
abaqus software. It is through this study that the only analytical Mindlin plate solutions by Cooke and Levinson (Int. J. Mech. Sci. 25 (1983) 207) are found to contain errors. In this study, it is found that there are important distinctions between the Mindlin and Reissner plate theories. These differences will also be substantiated by numerical comparison.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(01)00205-0</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2002-01, Vol.39 (1), p.127-144 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_27746473 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bending Exact sciences and technology Fundamental areas of phenomenology (including applications) Lévy solutions Mindlin plate theory Physics Reissner plate theory Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics Thick plates |
title | Thick Lévy plates re-visited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thick%20L%C3%A9vy%20plates%20re-visited&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Lee,%20K.H.&rft.date=2002-01-01&rft.volume=39&rft.issue=1&rft.spage=127&rft.epage=144&rft.pages=127-144&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(01)00205-0&rft_dat=%3Cproquest_cross%3E27746473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27746473&rft_id=info:pmid/&rft_els_id=S0020768301002050&rfr_iscdi=true |