System identification by genetic algorithm

This paper presents a method for identifying systems through their input-output behavior and the Genetic Algorithm (GA). The advantages of this technique are, first, it is not dependent on the deterministic or stochastic nature of the systems and, second, the globally optimized models for the origin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Duong, V., Stubberud, A.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 5
container_title
container_volume 5
creator Duong, V.
Stubberud, A.R.
description This paper presents a method for identifying systems through their input-output behavior and the Genetic Algorithm (GA). The advantages of this technique are, first, it is not dependent on the deterministic or stochastic nature of the systems and, second, the globally optimized models for the original systems can be identified without the need of a differentiable measure function or linearly separable parameters. The results are compared to similar results from Least Squares (LS) identification methods.
doi_str_mv 10.1109/AERO.2002.1035405
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27745308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1035405</ieee_id><sourcerecordid>27745308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-30878af9e29e9998f74daa14372d29ce0991676eb011c9a0857fa0bb7c06241d3</originalsourceid><addsrcrecordid>eNotkD1rwzAYhAVtoWmaH1C6eOpQsPtKsixpDCFpC4FAPyCbkeXXqYo_UksZ_O8rSG655eHuOEIeKGSUgn5Zrj92GQNgGQUuchBX5A6kAi4Zp_trMouQSDnj-1uy8P4XogQUmhYz8vw5-YBd4mrsg2ucNcENfVJNyQF7DM4mpj0Mows_3T25aUzrcXHxOfnerL9Wb-l29_q-Wm5TywQLKQcllWk0Mo1aa9XIvDaG5nFNzbRF0LFYFlgBpVYbUEI2BqpKWihYTms-J0_n3OM4_J3Qh7Jz3mLbmh6Hky-ZlLmILRF8PIMOEcvj6DozTuXlA_4PnctOiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27745308</pqid></control><display><type>conference_proceeding</type><title>System identification by genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Duong, V. ; Stubberud, A.R.</creator><creatorcontrib>Duong, V. ; Stubberud, A.R.</creatorcontrib><description>This paper presents a method for identifying systems through their input-output behavior and the Genetic Algorithm (GA). The advantages of this technique are, first, it is not dependent on the deterministic or stochastic nature of the systems and, second, the globally optimized models for the original systems can be identified without the need of a differentiable measure function or linearly separable parameters. The results are compared to similar results from Least Squares (LS) identification methods.</description><identifier>ISSN: 1095-323X</identifier><identifier>ISBN: 078037231X</identifier><identifier>ISBN: 9780780372313</identifier><identifier>DOI: 10.1109/AERO.2002.1035405</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation error ; Genetic algorithms ; Least squares approximation ; Least squares methods ; Nonlinear systems ; Paper technology ; Parameter estimation ; Propulsion ; Stochastic systems ; System identification</subject><ispartof>2002 IEEE Aerospace Conference. Proceedings. Vol. 5, 2002, Vol.5, p.5-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-30878af9e29e9998f74daa14372d29ce0991676eb011c9a0857fa0bb7c06241d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1035405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1035405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duong, V.</creatorcontrib><creatorcontrib>Stubberud, A.R.</creatorcontrib><title>System identification by genetic algorithm</title><title>2002 IEEE Aerospace Conference. Proceedings. Vol. 5</title><addtitle>AERO</addtitle><description>This paper presents a method for identifying systems through their input-output behavior and the Genetic Algorithm (GA). The advantages of this technique are, first, it is not dependent on the deterministic or stochastic nature of the systems and, second, the globally optimized models for the original systems can be identified without the need of a differentiable measure function or linearly separable parameters. The results are compared to similar results from Least Squares (LS) identification methods.</description><subject>Approximation error</subject><subject>Genetic algorithms</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Nonlinear systems</subject><subject>Paper technology</subject><subject>Parameter estimation</subject><subject>Propulsion</subject><subject>Stochastic systems</subject><subject>System identification</subject><issn>1095-323X</issn><isbn>078037231X</isbn><isbn>9780780372313</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkD1rwzAYhAVtoWmaH1C6eOpQsPtKsixpDCFpC4FAPyCbkeXXqYo_UksZ_O8rSG655eHuOEIeKGSUgn5Zrj92GQNgGQUuchBX5A6kAi4Zp_trMouQSDnj-1uy8P4XogQUmhYz8vw5-YBd4mrsg2ucNcENfVJNyQF7DM4mpj0Mows_3T25aUzrcXHxOfnerL9Wb-l29_q-Wm5TywQLKQcllWk0Mo1aa9XIvDaG5nFNzbRF0LFYFlgBpVYbUEI2BqpKWihYTms-J0_n3OM4_J3Qh7Jz3mLbmh6Hky-ZlLmILRF8PIMOEcvj6DozTuXlA_4PnctOiw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Duong, V.</creator><creator>Stubberud, A.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2002</creationdate><title>System identification by genetic algorithm</title><author>Duong, V. ; Stubberud, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-30878af9e29e9998f74daa14372d29ce0991676eb011c9a0857fa0bb7c06241d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Approximation error</topic><topic>Genetic algorithms</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Nonlinear systems</topic><topic>Paper technology</topic><topic>Parameter estimation</topic><topic>Propulsion</topic><topic>Stochastic systems</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Duong, V.</creatorcontrib><creatorcontrib>Stubberud, A.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duong, V.</au><au>Stubberud, A.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>System identification by genetic algorithm</atitle><btitle>2002 IEEE Aerospace Conference. Proceedings. Vol. 5</btitle><stitle>AERO</stitle><date>2002</date><risdate>2002</risdate><volume>5</volume><spage>5</spage><epage>5</epage><pages>5-5</pages><issn>1095-323X</issn><isbn>078037231X</isbn><isbn>9780780372313</isbn><abstract>This paper presents a method for identifying systems through their input-output behavior and the Genetic Algorithm (GA). The advantages of this technique are, first, it is not dependent on the deterministic or stochastic nature of the systems and, second, the globally optimized models for the original systems can be identified without the need of a differentiable measure function or linearly separable parameters. The results are compared to similar results from Least Squares (LS) identification methods.</abstract><pub>IEEE</pub><doi>10.1109/AERO.2002.1035405</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-323X
ispartof 2002 IEEE Aerospace Conference. Proceedings. Vol. 5, 2002, Vol.5, p.5-5
issn 1095-323X
language eng
recordid cdi_proquest_miscellaneous_27745308
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation error
Genetic algorithms
Least squares approximation
Least squares methods
Nonlinear systems
Paper technology
Parameter estimation
Propulsion
Stochastic systems
System identification
title System identification by genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=System%20identification%20by%20genetic%20algorithm&rft.btitle=2002%20IEEE%20Aerospace%20Conference.%20Proceedings.%20Vol.%205&rft.au=Duong,%20V.&rft.date=2002&rft.volume=5&rft.spage=5&rft.epage=5&rft.pages=5-5&rft.issn=1095-323X&rft.isbn=078037231X&rft.isbn_list=9780780372313&rft_id=info:doi/10.1109/AERO.2002.1035405&rft_dat=%3Cproquest_6IE%3E27745308%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27745308&rft_id=info:pmid/&rft_ieee_id=1035405&rfr_iscdi=true