Computational investigation of α-SiO2 surfaces as a support for Pd

The properties of a supported metal catalyst depend crucially on the interaction between the active metal and the support. A case in point is Pd supported on silica, Pd/SiO2, which is widely used in oxidation catalysis. There is a need for a broad range of computational models that describe the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-02, Vol.25 (8), p.6121-6130
Hauptverfasser: Lombard, C J, C G C E van Sittert, Mugo, J N, Perry, C, Willock, D J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6130
container_issue 8
container_start_page 6121
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Lombard, C J
C G C E van Sittert
Mugo, J N
Perry, C
Willock, D J
description The properties of a supported metal catalyst depend crucially on the interaction between the active metal and the support. A case in point is Pd supported on silica, Pd/SiO2, which is widely used in oxidation catalysis. There is a need for a broad range of computational models that describe the interaction of Pd with silica surfaces so that active site models can be proposed and tested. In this work, we create well-defined, reproducible, periodic models of SiO2 surfaces and investigate their interaction with Pd using dispersion-corrected DFT. We use crystalline α-SiO2 as a useful starting point for creating and estimating the adsorption properties of metals on SiO2 surfaces, which can represent the specific isolated functional groups present on more complex amorphous silica surfaces. We have modelled α-SiO2 (001), (100) and (101) surfaces containing isolated siloxane and silanol functional groups and estimated their affinity towards the adsorption of Pd atoms regarding an isolated gaseous Pd atom and the fcc Pd solid. This provides additional information on the ease with which Pd can be dispersed on the surfaces in question. From our model, we characterise the surface energies of the α-SiO2 (hkl) surfaces and calculate the geometries of the Pd1/α-SiO2 (hkl) adsorption site on each surface. We estimate that Pd1(g) will prefer to adsorb close to strained four-membered siloxane rings or on a vicinal silanol group of α-SiO2 (101).
doi_str_mv 10.1039/d2cp04722e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2774496958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778850288</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-e73172d4b2fc17b7663d71b1b22107392ce76b691f323ee4b1682cc120ea7a8e3</originalsourceid><addsrcrecordid>eNpdj89KxDAQh4MouK5efIKAFy_VzCRN0qMU_8HCCup5SdJEunSb2LS-ly_iM1lW8SAM_OaDj2F-hJwDuwLGq-sGXWJCIfoDsgAheVExLQ7_diWPyUnOW8YYlMAXpK7jLk2jGdvYm462_YfPY_u2ZxoD_fosnts10jwNwTifqZlnppTiMNIQB_rUnJKjYLrsz35zSV7vbl_qh2K1vn-sb1ZFQpBj4RUHhY2wGBwoq6TkjQILFhGY4hU6r6SVFQSO3HthQWp0DpB5o4z2fEkuf-6mIb5P85-bXZud7zrT-zjlDSolRCWrUs_qxT91G6dhbri3tC4Zas2_AXgDWWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778850288</pqid></control><display><type>article</type><title>Computational investigation of α-SiO2 surfaces as a support for Pd</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Lombard, C J ; C G C E van Sittert ; Mugo, J N ; Perry, C ; Willock, D J</creator><creatorcontrib>Lombard, C J ; C G C E van Sittert ; Mugo, J N ; Perry, C ; Willock, D J</creatorcontrib><description>The properties of a supported metal catalyst depend crucially on the interaction between the active metal and the support. A case in point is Pd supported on silica, Pd/SiO2, which is widely used in oxidation catalysis. There is a need for a broad range of computational models that describe the interaction of Pd with silica surfaces so that active site models can be proposed and tested. In this work, we create well-defined, reproducible, periodic models of SiO2 surfaces and investigate their interaction with Pd using dispersion-corrected DFT. We use crystalline α-SiO2 as a useful starting point for creating and estimating the adsorption properties of metals on SiO2 surfaces, which can represent the specific isolated functional groups present on more complex amorphous silica surfaces. We have modelled α-SiO2 (001), (100) and (101) surfaces containing isolated siloxane and silanol functional groups and estimated their affinity towards the adsorption of Pd atoms regarding an isolated gaseous Pd atom and the fcc Pd solid. This provides additional information on the ease with which Pd can be dispersed on the surfaces in question. From our model, we characterise the surface energies of the α-SiO2 (hkl) surfaces and calculate the geometries of the Pd1/α-SiO2 (hkl) adsorption site on each surface. We estimate that Pd1(g) will prefer to adsorb close to strained four-membered siloxane rings or on a vicinal silanol group of α-SiO2 (101).</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp04722e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Catalysis ; Dispersion ; Functional groups ; Oxidation ; Palladium ; Silicon dioxide ; Siloxanes ; Surface chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (8), p.6121-6130</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Lombard, C J</creatorcontrib><creatorcontrib>C G C E van Sittert</creatorcontrib><creatorcontrib>Mugo, J N</creatorcontrib><creatorcontrib>Perry, C</creatorcontrib><creatorcontrib>Willock, D J</creatorcontrib><title>Computational investigation of α-SiO2 surfaces as a support for Pd</title><title>Physical chemistry chemical physics : PCCP</title><description>The properties of a supported metal catalyst depend crucially on the interaction between the active metal and the support. A case in point is Pd supported on silica, Pd/SiO2, which is widely used in oxidation catalysis. There is a need for a broad range of computational models that describe the interaction of Pd with silica surfaces so that active site models can be proposed and tested. In this work, we create well-defined, reproducible, periodic models of SiO2 surfaces and investigate their interaction with Pd using dispersion-corrected DFT. We use crystalline α-SiO2 as a useful starting point for creating and estimating the adsorption properties of metals on SiO2 surfaces, which can represent the specific isolated functional groups present on more complex amorphous silica surfaces. We have modelled α-SiO2 (001), (100) and (101) surfaces containing isolated siloxane and silanol functional groups and estimated their affinity towards the adsorption of Pd atoms regarding an isolated gaseous Pd atom and the fcc Pd solid. This provides additional information on the ease with which Pd can be dispersed on the surfaces in question. From our model, we characterise the surface energies of the α-SiO2 (hkl) surfaces and calculate the geometries of the Pd1/α-SiO2 (hkl) adsorption site on each surface. We estimate that Pd1(g) will prefer to adsorb close to strained four-membered siloxane rings or on a vicinal silanol group of α-SiO2 (101).</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Dispersion</subject><subject>Functional groups</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Silicon dioxide</subject><subject>Siloxanes</subject><subject>Surface chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdj89KxDAQh4MouK5efIKAFy_VzCRN0qMU_8HCCup5SdJEunSb2LS-ly_iM1lW8SAM_OaDj2F-hJwDuwLGq-sGXWJCIfoDsgAheVExLQ7_diWPyUnOW8YYlMAXpK7jLk2jGdvYm462_YfPY_u2ZxoD_fosnts10jwNwTifqZlnppTiMNIQB_rUnJKjYLrsz35zSV7vbl_qh2K1vn-sb1ZFQpBj4RUHhY2wGBwoq6TkjQILFhGY4hU6r6SVFQSO3HthQWp0DpB5o4z2fEkuf-6mIb5P85-bXZud7zrT-zjlDSolRCWrUs_qxT91G6dhbri3tC4Zas2_AXgDWWw</recordid><startdate>20230222</startdate><enddate>20230222</enddate><creator>Lombard, C J</creator><creator>C G C E van Sittert</creator><creator>Mugo, J N</creator><creator>Perry, C</creator><creator>Willock, D J</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230222</creationdate><title>Computational investigation of α-SiO2 surfaces as a support for Pd</title><author>Lombard, C J ; C G C E van Sittert ; Mugo, J N ; Perry, C ; Willock, D J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-e73172d4b2fc17b7663d71b1b22107392ce76b691f323ee4b1682cc120ea7a8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Dispersion</topic><topic>Functional groups</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Silicon dioxide</topic><topic>Siloxanes</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lombard, C J</creatorcontrib><creatorcontrib>C G C E van Sittert</creatorcontrib><creatorcontrib>Mugo, J N</creatorcontrib><creatorcontrib>Perry, C</creatorcontrib><creatorcontrib>Willock, D J</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lombard, C J</au><au>C G C E van Sittert</au><au>Mugo, J N</au><au>Perry, C</au><au>Willock, D J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational investigation of α-SiO2 surfaces as a support for Pd</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-02-22</date><risdate>2023</risdate><volume>25</volume><issue>8</issue><spage>6121</spage><epage>6130</epage><pages>6121-6130</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The properties of a supported metal catalyst depend crucially on the interaction between the active metal and the support. A case in point is Pd supported on silica, Pd/SiO2, which is widely used in oxidation catalysis. There is a need for a broad range of computational models that describe the interaction of Pd with silica surfaces so that active site models can be proposed and tested. In this work, we create well-defined, reproducible, periodic models of SiO2 surfaces and investigate their interaction with Pd using dispersion-corrected DFT. We use crystalline α-SiO2 as a useful starting point for creating and estimating the adsorption properties of metals on SiO2 surfaces, which can represent the specific isolated functional groups present on more complex amorphous silica surfaces. We have modelled α-SiO2 (001), (100) and (101) surfaces containing isolated siloxane and silanol functional groups and estimated their affinity towards the adsorption of Pd atoms regarding an isolated gaseous Pd atom and the fcc Pd solid. This provides additional information on the ease with which Pd can be dispersed on the surfaces in question. From our model, we characterise the surface energies of the α-SiO2 (hkl) surfaces and calculate the geometries of the Pd1/α-SiO2 (hkl) adsorption site on each surface. We estimate that Pd1(g) will prefer to adsorb close to strained four-membered siloxane rings or on a vicinal silanol group of α-SiO2 (101).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp04722e</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (8), p.6121-6130
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2774496958
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Adsorption
Catalysis
Dispersion
Functional groups
Oxidation
Palladium
Silicon dioxide
Siloxanes
Surface chemistry
title Computational investigation of α-SiO2 surfaces as a support for Pd
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20investigation%20of%20%CE%B1-SiO2%20surfaces%20as%20a%20support%20for%20Pd&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Lombard,%20C%20J&rft.date=2023-02-22&rft.volume=25&rft.issue=8&rft.spage=6121&rft.epage=6130&rft.pages=6121-6130&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp04722e&rft_dat=%3Cproquest%3E2778850288%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778850288&rft_id=info:pmid/&rfr_iscdi=true