Funnel Devices Based on Asymmetrically Strained Transition Metal Dichalcogenides

The strain applied to transition metal dichalcogenides (TMDs) reduces their energy bandgap, and local strains result in a funnel‐like band structure in which funneled excitons move toward the most strained region. Herein, a funnel device based on asymmetrically strained WS2 and MoS2 is reported. Asy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-04, Vol.35 (16), p.e2209788-n/a
Hauptverfasser: Park, Myung Uk, Kim, Myeongjin, Kim, Sung Hyun, Lee, ChangJun, Lee, Kyo‐Seok, Jeong, Jaehun, Cho, Mann‐Ho, Kim, Dug Young, Yoo, Kyung‐Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2209788
container_title Advanced materials (Weinheim)
container_volume 35
creator Park, Myung Uk
Kim, Myeongjin
Kim, Sung Hyun
Lee, ChangJun
Lee, Kyo‐Seok
Jeong, Jaehun
Cho, Mann‐Ho
Kim, Dug Young
Yoo, Kyung‐Hwa
description The strain applied to transition metal dichalcogenides (TMDs) reduces their energy bandgap, and local strains result in a funnel‐like band structure in which funneled excitons move toward the most strained region. Herein, a funnel device based on asymmetrically strained WS2 and MoS2 is reported. Asymmetric strains are induced by transferring the TMD flakes onto a fork‐shaped SU‐8 microstructure. Raman and photoluminescence spectra peaks are shifted according to the morphology of the SU‐8 microstructure, indicating the application of asymmetric strains to the TMDs. To investigate whether funneled excitons can be converted to electrical currents, various devices are constructed by depositing symmetric and asymmetric electrodes onto the strained TMDs. The scanning photocurrent mapping images follow a fork‐shaped pattern, indicating probable conversion of the funneled excitons into electrical currents. In the case of the funnel devices with asymmetric Au and Al electrodes, short‐circuit current (ISC) of WS2 is enhanced by the strains, whereas ISC of MoS2 is suppressed because the Schottky barrier lowers with increasing strain for the MoS2. These results demonstrate that the funnel devices can be implemented using asymmetrically strained TMDs and the effect of strains on the Schottky barrier is dependent on the TMD used. Funnel devices are developed using WS2 and MoS2 transferred onto a fork‐shaped SU‐8 microstructure. Atomic force microscope, Raman, and photoluminescence measurements indicate that asymmetric strains are introduced to the transferred transition metal dichalcogenides. The scanning photocurrent mapping images acquired from various funnel devices follow a fork‐shaped pattern, demonstrating that funneled excitons can be converted to electrical currents.
doi_str_mv 10.1002/adma.202209788
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2774496669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774496669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-6a846dd340c2d38449797417d96dfd988aac366aae2b25c052e6d1033d902cd53</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMotj6uHmXBi5etk2Q3mxzrW1AUrOcQk6mm7KMmu0r_vVtaK3jxNIf55mP4CDmiMKIA7My4yowYMAaqkHKLDGnOaJqByrfJEBTPUyUyOSB7Mc4AQAkQu2TARZFDRsWQPF13dY1lcomf3mJMzk1ElzR1Mo6LqsI2eGvKcpE8t8H4ul9Ngqmjb32PPGBr-ktv301pmzesvcN4QHampox4uJ775OX6anJxm94_3txdjO9TywsuU2FkJpzjGVjmuMwyVagio4VTwk2dktIYy4UwBtkryy3kDIWjwLlTwKzL-T45XXnnofnoMLa68tFiWZoamy5qVhS9VAihevTkDzprulD332kmgTMKNF8KRyvKhibGgFM9D74yYaEp6GVrvWytN637g-O1tnut0G3wn7g9oFbAly9x8Y9Ojy8fxr_ybzwSids</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803210155</pqid></control><display><type>article</type><title>Funnel Devices Based on Asymmetrically Strained Transition Metal Dichalcogenides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Myung Uk ; Kim, Myeongjin ; Kim, Sung Hyun ; Lee, ChangJun ; Lee, Kyo‐Seok ; Jeong, Jaehun ; Cho, Mann‐Ho ; Kim, Dug Young ; Yoo, Kyung‐Hwa</creator><creatorcontrib>Park, Myung Uk ; Kim, Myeongjin ; Kim, Sung Hyun ; Lee, ChangJun ; Lee, Kyo‐Seok ; Jeong, Jaehun ; Cho, Mann‐Ho ; Kim, Dug Young ; Yoo, Kyung‐Hwa</creatorcontrib><description>The strain applied to transition metal dichalcogenides (TMDs) reduces their energy bandgap, and local strains result in a funnel‐like band structure in which funneled excitons move toward the most strained region. Herein, a funnel device based on asymmetrically strained WS2 and MoS2 is reported. Asymmetric strains are induced by transferring the TMD flakes onto a fork‐shaped SU‐8 microstructure. Raman and photoluminescence spectra peaks are shifted according to the morphology of the SU‐8 microstructure, indicating the application of asymmetric strains to the TMDs. To investigate whether funneled excitons can be converted to electrical currents, various devices are constructed by depositing symmetric and asymmetric electrodes onto the strained TMDs. The scanning photocurrent mapping images follow a fork‐shaped pattern, indicating probable conversion of the funneled excitons into electrical currents. In the case of the funnel devices with asymmetric Au and Al electrodes, short‐circuit current (ISC) of WS2 is enhanced by the strains, whereas ISC of MoS2 is suppressed because the Schottky barrier lowers with increasing strain for the MoS2. These results demonstrate that the funnel devices can be implemented using asymmetrically strained TMDs and the effect of strains on the Schottky barrier is dependent on the TMD used. Funnel devices are developed using WS2 and MoS2 transferred onto a fork‐shaped SU‐8 microstructure. Atomic force microscope, Raman, and photoluminescence measurements indicate that asymmetric strains are introduced to the transferred transition metal dichalcogenides. The scanning photocurrent mapping images acquired from various funnel devices follow a fork‐shaped pattern, demonstrating that funneled excitons can be converted to electrical currents.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202209788</identifier><identifier>PMID: 36750416</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>asymmetric strain engineering ; Asymmetry ; Chalcogenides ; Circuits ; Devices ; Electric currents ; Electrodes ; Excitons ; funnel effect ; Materials science ; Microstructure ; Molybdenum disulfide ; Photoelectric effect ; Photoluminescence ; short‐circuit currents ; SU‐8 microstructure ; Transition metal compounds ; transition‐metal dichalcogenides ; Tungsten disulfide</subject><ispartof>Advanced materials (Weinheim), 2023-04, Vol.35 (16), p.e2209788-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-6a846dd340c2d38449797417d96dfd988aac366aae2b25c052e6d1033d902cd53</citedby><cites>FETCH-LOGICAL-c3738-6a846dd340c2d38449797417d96dfd988aac366aae2b25c052e6d1033d902cd53</cites><orcidid>0000-0001-9186-3095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202209788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202209788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36750416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Myung Uk</creatorcontrib><creatorcontrib>Kim, Myeongjin</creatorcontrib><creatorcontrib>Kim, Sung Hyun</creatorcontrib><creatorcontrib>Lee, ChangJun</creatorcontrib><creatorcontrib>Lee, Kyo‐Seok</creatorcontrib><creatorcontrib>Jeong, Jaehun</creatorcontrib><creatorcontrib>Cho, Mann‐Ho</creatorcontrib><creatorcontrib>Kim, Dug Young</creatorcontrib><creatorcontrib>Yoo, Kyung‐Hwa</creatorcontrib><title>Funnel Devices Based on Asymmetrically Strained Transition Metal Dichalcogenides</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The strain applied to transition metal dichalcogenides (TMDs) reduces their energy bandgap, and local strains result in a funnel‐like band structure in which funneled excitons move toward the most strained region. Herein, a funnel device based on asymmetrically strained WS2 and MoS2 is reported. Asymmetric strains are induced by transferring the TMD flakes onto a fork‐shaped SU‐8 microstructure. Raman and photoluminescence spectra peaks are shifted according to the morphology of the SU‐8 microstructure, indicating the application of asymmetric strains to the TMDs. To investigate whether funneled excitons can be converted to electrical currents, various devices are constructed by depositing symmetric and asymmetric electrodes onto the strained TMDs. The scanning photocurrent mapping images follow a fork‐shaped pattern, indicating probable conversion of the funneled excitons into electrical currents. In the case of the funnel devices with asymmetric Au and Al electrodes, short‐circuit current (ISC) of WS2 is enhanced by the strains, whereas ISC of MoS2 is suppressed because the Schottky barrier lowers with increasing strain for the MoS2. These results demonstrate that the funnel devices can be implemented using asymmetrically strained TMDs and the effect of strains on the Schottky barrier is dependent on the TMD used. Funnel devices are developed using WS2 and MoS2 transferred onto a fork‐shaped SU‐8 microstructure. Atomic force microscope, Raman, and photoluminescence measurements indicate that asymmetric strains are introduced to the transferred transition metal dichalcogenides. The scanning photocurrent mapping images acquired from various funnel devices follow a fork‐shaped pattern, demonstrating that funneled excitons can be converted to electrical currents.</description><subject>asymmetric strain engineering</subject><subject>Asymmetry</subject><subject>Chalcogenides</subject><subject>Circuits</subject><subject>Devices</subject><subject>Electric currents</subject><subject>Electrodes</subject><subject>Excitons</subject><subject>funnel effect</subject><subject>Materials science</subject><subject>Microstructure</subject><subject>Molybdenum disulfide</subject><subject>Photoelectric effect</subject><subject>Photoluminescence</subject><subject>short‐circuit currents</subject><subject>SU‐8 microstructure</subject><subject>Transition metal compounds</subject><subject>transition‐metal dichalcogenides</subject><subject>Tungsten disulfide</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMotj6uHmXBi5etk2Q3mxzrW1AUrOcQk6mm7KMmu0r_vVtaK3jxNIf55mP4CDmiMKIA7My4yowYMAaqkHKLDGnOaJqByrfJEBTPUyUyOSB7Mc4AQAkQu2TARZFDRsWQPF13dY1lcomf3mJMzk1ElzR1Mo6LqsI2eGvKcpE8t8H4ul9Ngqmjb32PPGBr-ktv301pmzesvcN4QHampox4uJ775OX6anJxm94_3txdjO9TywsuU2FkJpzjGVjmuMwyVagio4VTwk2dktIYy4UwBtkryy3kDIWjwLlTwKzL-T45XXnnofnoMLa68tFiWZoamy5qVhS9VAihevTkDzprulD332kmgTMKNF8KRyvKhibGgFM9D74yYaEp6GVrvWytN637g-O1tnut0G3wn7g9oFbAly9x8Y9Ojy8fxr_ybzwSids</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Park, Myung Uk</creator><creator>Kim, Myeongjin</creator><creator>Kim, Sung Hyun</creator><creator>Lee, ChangJun</creator><creator>Lee, Kyo‐Seok</creator><creator>Jeong, Jaehun</creator><creator>Cho, Mann‐Ho</creator><creator>Kim, Dug Young</creator><creator>Yoo, Kyung‐Hwa</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9186-3095</orcidid></search><sort><creationdate>20230401</creationdate><title>Funnel Devices Based on Asymmetrically Strained Transition Metal Dichalcogenides</title><author>Park, Myung Uk ; Kim, Myeongjin ; Kim, Sung Hyun ; Lee, ChangJun ; Lee, Kyo‐Seok ; Jeong, Jaehun ; Cho, Mann‐Ho ; Kim, Dug Young ; Yoo, Kyung‐Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-6a846dd340c2d38449797417d96dfd988aac366aae2b25c052e6d1033d902cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>asymmetric strain engineering</topic><topic>Asymmetry</topic><topic>Chalcogenides</topic><topic>Circuits</topic><topic>Devices</topic><topic>Electric currents</topic><topic>Electrodes</topic><topic>Excitons</topic><topic>funnel effect</topic><topic>Materials science</topic><topic>Microstructure</topic><topic>Molybdenum disulfide</topic><topic>Photoelectric effect</topic><topic>Photoluminescence</topic><topic>short‐circuit currents</topic><topic>SU‐8 microstructure</topic><topic>Transition metal compounds</topic><topic>transition‐metal dichalcogenides</topic><topic>Tungsten disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Myung Uk</creatorcontrib><creatorcontrib>Kim, Myeongjin</creatorcontrib><creatorcontrib>Kim, Sung Hyun</creatorcontrib><creatorcontrib>Lee, ChangJun</creatorcontrib><creatorcontrib>Lee, Kyo‐Seok</creatorcontrib><creatorcontrib>Jeong, Jaehun</creatorcontrib><creatorcontrib>Cho, Mann‐Ho</creatorcontrib><creatorcontrib>Kim, Dug Young</creatorcontrib><creatorcontrib>Yoo, Kyung‐Hwa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Myung Uk</au><au>Kim, Myeongjin</au><au>Kim, Sung Hyun</au><au>Lee, ChangJun</au><au>Lee, Kyo‐Seok</au><au>Jeong, Jaehun</au><au>Cho, Mann‐Ho</au><au>Kim, Dug Young</au><au>Yoo, Kyung‐Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Funnel Devices Based on Asymmetrically Strained Transition Metal Dichalcogenides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>35</volume><issue>16</issue><spage>e2209788</spage><epage>n/a</epage><pages>e2209788-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The strain applied to transition metal dichalcogenides (TMDs) reduces their energy bandgap, and local strains result in a funnel‐like band structure in which funneled excitons move toward the most strained region. Herein, a funnel device based on asymmetrically strained WS2 and MoS2 is reported. Asymmetric strains are induced by transferring the TMD flakes onto a fork‐shaped SU‐8 microstructure. Raman and photoluminescence spectra peaks are shifted according to the morphology of the SU‐8 microstructure, indicating the application of asymmetric strains to the TMDs. To investigate whether funneled excitons can be converted to electrical currents, various devices are constructed by depositing symmetric and asymmetric electrodes onto the strained TMDs. The scanning photocurrent mapping images follow a fork‐shaped pattern, indicating probable conversion of the funneled excitons into electrical currents. In the case of the funnel devices with asymmetric Au and Al electrodes, short‐circuit current (ISC) of WS2 is enhanced by the strains, whereas ISC of MoS2 is suppressed because the Schottky barrier lowers with increasing strain for the MoS2. These results demonstrate that the funnel devices can be implemented using asymmetrically strained TMDs and the effect of strains on the Schottky barrier is dependent on the TMD used. Funnel devices are developed using WS2 and MoS2 transferred onto a fork‐shaped SU‐8 microstructure. Atomic force microscope, Raman, and photoluminescence measurements indicate that asymmetric strains are introduced to the transferred transition metal dichalcogenides. The scanning photocurrent mapping images acquired from various funnel devices follow a fork‐shaped pattern, demonstrating that funneled excitons can be converted to electrical currents.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36750416</pmid><doi>10.1002/adma.202209788</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9186-3095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-04, Vol.35 (16), p.e2209788-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2774496669
source Wiley Online Library Journals Frontfile Complete
subjects asymmetric strain engineering
Asymmetry
Chalcogenides
Circuits
Devices
Electric currents
Electrodes
Excitons
funnel effect
Materials science
Microstructure
Molybdenum disulfide
Photoelectric effect
Photoluminescence
short‐circuit currents
SU‐8 microstructure
Transition metal compounds
transition‐metal dichalcogenides
Tungsten disulfide
title Funnel Devices Based on Asymmetrically Strained Transition Metal Dichalcogenides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Funnel%20Devices%20Based%20on%20Asymmetrically%20Strained%20Transition%20Metal%20Dichalcogenides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Park,%20Myung%20Uk&rft.date=2023-04-01&rft.volume=35&rft.issue=16&rft.spage=e2209788&rft.epage=n/a&rft.pages=e2209788-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202209788&rft_dat=%3Cproquest_cross%3E2774496669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803210155&rft_id=info:pmid/36750416&rfr_iscdi=true