Engineering a Copper Single‐Atom Electron Bridge to Achieve Efficient Photocatalytic CO2 Conversion
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z‐Scheme photocatalyst with N−Cu1−S single‐atom electron bridge (denoted as Cu‐SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu‐SAEB is...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-03, Vol.62 (13), p.e202218460-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | e202218460 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Wang, Gang Wu, Yan Li, Zhujie Lou, Zaizhu Chen, Qingqing Li, Yifan Wang, Dingsheng Mao, Junjie |
description | Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z‐Scheme photocatalyst with N−Cu1−S single‐atom electron bridge (denoted as Cu‐SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu‐SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as‐designed Cu‐SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu‐SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z‐scheme interfacial charge‐transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu‐SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.
Copper single‐atom electron bridges (SAEB) were constructed at the contact interface between Cu1/MoS2 and MIL‐125‐NH2 to achieve a highly active and stable catalyst for CO2 photoreduction. Empowered by the N−Cu1−S SAEB species, the Z‐Scheme charge‐transfer process was significantly promoted, leading to enhancement of the photocatalytic CO2RR. |
doi_str_mv | 10.1002/anie.202218460 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2774267796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774267796</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2660-e9743afb592d19fc705a3defbcd66d4f9e8767a8447bcf8599d662027f6386f13</originalsourceid><addsrcrecordid>eNpdkM1KxDAUhYMo-Lt1HXDjpmN-2iRd1qHqgKigrksmvRkjnaSmnZHZ-Qg-o09iBsWFq3vP5eNwz0HolJIJJYRdaO9gwghjVOWC7KADWjCacSn5btpzzjOpCrqPDofhNfFKEXGAoPYL5wGi8wus8TT0PUT8mFQHXx-f1RiWuO7AjDF4fBlduwA8BlyZFwdrwLW1zjjwI354CWMwetTdZnQGT-9ZMvNriIML_hjtWd0NcPI7j9DzVf00vclu769n0-o265kQJINS5lzbeVGylpbWSFJo3oKdm1aINrclKCmkVnku58aqoizTPSWWVnAlLOVH6PzHt4_hbQXD2CzdYKDrtIewGhomZc6ElKVI6Nk_9DWsok_fJUoJImgueKLKH-rddbBp-uiWOm4aSppt5c228uav8qa6m9V_in8D0rR3_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786061463</pqid></control><display><type>article</type><title>Engineering a Copper Single‐Atom Electron Bridge to Achieve Efficient Photocatalytic CO2 Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Gang ; Wu, Yan ; Li, Zhujie ; Lou, Zaizhu ; Chen, Qingqing ; Li, Yifan ; Wang, Dingsheng ; Mao, Junjie</creator><creatorcontrib>Wang, Gang ; Wu, Yan ; Li, Zhujie ; Lou, Zaizhu ; Chen, Qingqing ; Li, Yifan ; Wang, Dingsheng ; Mao, Junjie</creatorcontrib><description>Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z‐Scheme photocatalyst with N−Cu1−S single‐atom electron bridge (denoted as Cu‐SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu‐SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as‐designed Cu‐SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu‐SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z‐scheme interfacial charge‐transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu‐SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.
Copper single‐atom electron bridges (SAEB) were constructed at the contact interface between Cu1/MoS2 and MIL‐125‐NH2 to achieve a highly active and stable catalyst for CO2 photoreduction. Empowered by the N−Cu1−S SAEB species, the Z‐Scheme charge‐transfer process was significantly promoted, leading to enhancement of the photocatalytic CO2RR.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202218460</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Carbon dioxide ; Chemical reduction ; CO2RR ; Conversion ; Copper ; Copper converters ; Electron Bridge ; MIL-125-NH2 ; Photocatalysis ; Photocatalysts ; Single-Atom ; Transport processes ; Z-Scheme</subject><ispartof>Angewandte Chemie International Edition, 2023-03, Vol.62 (13), p.e202218460-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0074-7633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202218460$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202218460$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Li, Zhujie</creatorcontrib><creatorcontrib>Lou, Zaizhu</creatorcontrib><creatorcontrib>Chen, Qingqing</creatorcontrib><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Mao, Junjie</creatorcontrib><title>Engineering a Copper Single‐Atom Electron Bridge to Achieve Efficient Photocatalytic CO2 Conversion</title><title>Angewandte Chemie International Edition</title><description>Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z‐Scheme photocatalyst with N−Cu1−S single‐atom electron bridge (denoted as Cu‐SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu‐SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as‐designed Cu‐SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu‐SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z‐scheme interfacial charge‐transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu‐SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.
Copper single‐atom electron bridges (SAEB) were constructed at the contact interface between Cu1/MoS2 and MIL‐125‐NH2 to achieve a highly active and stable catalyst for CO2 photoreduction. Empowered by the N−Cu1−S SAEB species, the Z‐Scheme charge‐transfer process was significantly promoted, leading to enhancement of the photocatalytic CO2RR.</description><subject>Atomic structure</subject><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>CO2RR</subject><subject>Conversion</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Electron Bridge</subject><subject>MIL-125-NH2</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Single-Atom</subject><subject>Transport processes</subject><subject>Z-Scheme</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkM1KxDAUhYMo-Lt1HXDjpmN-2iRd1qHqgKigrksmvRkjnaSmnZHZ-Qg-o09iBsWFq3vP5eNwz0HolJIJJYRdaO9gwghjVOWC7KADWjCacSn5btpzzjOpCrqPDofhNfFKEXGAoPYL5wGi8wus8TT0PUT8mFQHXx-f1RiWuO7AjDF4fBlduwA8BlyZFwdrwLW1zjjwI354CWMwetTdZnQGT-9ZMvNriIML_hjtWd0NcPI7j9DzVf00vclu769n0-o265kQJINS5lzbeVGylpbWSFJo3oKdm1aINrclKCmkVnku58aqoizTPSWWVnAlLOVH6PzHt4_hbQXD2CzdYKDrtIewGhomZc6ElKVI6Nk_9DWsok_fJUoJImgueKLKH-rddbBp-uiWOm4aSppt5c228uav8qa6m9V_in8D0rR3_w</recordid><startdate>20230320</startdate><enddate>20230320</enddate><creator>Wang, Gang</creator><creator>Wu, Yan</creator><creator>Li, Zhujie</creator><creator>Lou, Zaizhu</creator><creator>Chen, Qingqing</creator><creator>Li, Yifan</creator><creator>Wang, Dingsheng</creator><creator>Mao, Junjie</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid></search><sort><creationdate>20230320</creationdate><title>Engineering a Copper Single‐Atom Electron Bridge to Achieve Efficient Photocatalytic CO2 Conversion</title><author>Wang, Gang ; Wu, Yan ; Li, Zhujie ; Lou, Zaizhu ; Chen, Qingqing ; Li, Yifan ; Wang, Dingsheng ; Mao, Junjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2660-e9743afb592d19fc705a3defbcd66d4f9e8767a8447bcf8599d662027f6386f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic structure</topic><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>CO2RR</topic><topic>Conversion</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Electron Bridge</topic><topic>MIL-125-NH2</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Single-Atom</topic><topic>Transport processes</topic><topic>Z-Scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Li, Zhujie</creatorcontrib><creatorcontrib>Lou, Zaizhu</creatorcontrib><creatorcontrib>Chen, Qingqing</creatorcontrib><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Mao, Junjie</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang</au><au>Wu, Yan</au><au>Li, Zhujie</au><au>Lou, Zaizhu</au><au>Chen, Qingqing</au><au>Li, Yifan</au><au>Wang, Dingsheng</au><au>Mao, Junjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a Copper Single‐Atom Electron Bridge to Achieve Efficient Photocatalytic CO2 Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-03-20</date><risdate>2023</risdate><volume>62</volume><issue>13</issue><spage>e202218460</spage><epage>n/a</epage><pages>e202218460-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z‐Scheme photocatalyst with N−Cu1−S single‐atom electron bridge (denoted as Cu‐SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu‐SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as‐designed Cu‐SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu‐SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z‐scheme interfacial charge‐transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu‐SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.
Copper single‐atom electron bridges (SAEB) were constructed at the contact interface between Cu1/MoS2 and MIL‐125‐NH2 to achieve a highly active and stable catalyst for CO2 photoreduction. Empowered by the N−Cu1−S SAEB species, the Z‐Scheme charge‐transfer process was significantly promoted, leading to enhancement of the photocatalytic CO2RR.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202218460</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-03, Vol.62 (13), p.e202218460-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2774267796 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic structure Carbon dioxide Chemical reduction CO2RR Conversion Copper Copper converters Electron Bridge MIL-125-NH2 Photocatalysis Photocatalysts Single-Atom Transport processes Z-Scheme |
title | Engineering a Copper Single‐Atom Electron Bridge to Achieve Efficient Photocatalytic CO2 Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20Copper%20Single%E2%80%90Atom%20Electron%20Bridge%20to%20Achieve%20Efficient%20Photocatalytic%20CO2%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Gang&rft.date=2023-03-20&rft.volume=62&rft.issue=13&rft.spage=e202218460&rft.epage=n/a&rft.pages=e202218460-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202218460&rft_dat=%3Cproquest_wiley%3E2774267796%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786061463&rft_id=info:pmid/&rfr_iscdi=true |