Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor
Nitrogen-rich carbon nitrides are produced as amorphous, bulk solids from the slow thermal decomposition of 2,4,6-triazido-1,3,5-triazine [(C3N3)(N3)3]. This energetic molecular azide is thermally unstable and readily decomposes at 185 °C in a high-pressure reactor to produce carbon nitride material...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2000-12, Vol.12 (12), p.3906-3912 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3912 |
---|---|
container_issue | 12 |
container_start_page | 3906 |
container_title | Chemistry of materials |
container_volume | 12 |
creator | Gillan, Edward G |
description | Nitrogen-rich carbon nitrides are produced as amorphous, bulk solids from the slow thermal decomposition of 2,4,6-triazido-1,3,5-triazine [(C3N3)(N3)3]. This energetic molecular azide is thermally unstable and readily decomposes at 185 °C in a high-pressure reactor to produce carbon nitride materials, e.g., C3N4. Under applied nitrogen gas pressure, (C3N3)(N3)3 decomposes to yield a solid with one of the highest reported nitrogen-to-carbon ratios corresponding to C3N5. This azide precursor also decomposes upon rapid heating to 200 °C to form graphite nanoparticles without any retained nitrogen. Spectroscopic evidence (infrared, nuclear magnetic resonance, and ultraviolet−visible) demonstrates that the carbon−nitrogen solids have significant sp2 carbon bonding in a conjugated doubly bonded network. Electron microscopy reveals that these powders have a glassy microstructure with large irregular pores and voids. C3N4 and C3N5 are thermally stable up to 600 °C and sublime to produce carbon nitride thin films on SiO2 and Si substrates. A discussion on possible azide decomposition pathways and carbon nitride structures is presented. |
doi_str_mv | 10.1021/cm000570y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27742535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27742535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-c32d427214d6779c2607582307e0ed72347aa9cdb8971f0853704f54536727953</originalsourceid><addsrcrecordid>eNpt0E1PGzEQBmCrKlJTyoF_YKkCicPSsdfe2RxRykclEhAJKKdaxusFw2ZNxxvR9NezaVBOnCzbz8xoXsb2BRwLkOKHWwCARlh9YgOhJWQaQH5mAyiHmCnUxRf2NaUnANHzcsB-T1dt9-hTSDzWfBI6ig--zW6Ce-QjS_ex_f8YKs8nvnuN9Jx4TXHBbctPW08PvguOj2Pj3bKxxE_-rek19VdKkb6xndo2ye-9n7vs9ux0NrrILq_Of41OLjOrJHSZy2WlJEqhqgJx6GQBqEuZA3rwFcpcobVDV933W4gaSp0jqFornRcocajzXXa46ftC8c_Sp84sQnK-aWzr4zIZiaikztfwaAMdxZTI1-aFwsLSyggw6wTNNsHefn9vapOzTU22dSFtC8qy6F2vso0KqfN_t7-Wnk2BOWozu56a8Z26mIifczPv_cHGW5fMU1xS2wfzwfQ3Z_aJvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27742535</pqid></control><display><type>article</type><title>Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor</title><source>American Chemical Society Journals</source><creator>Gillan, Edward G</creator><creatorcontrib>Gillan, Edward G</creatorcontrib><description>Nitrogen-rich carbon nitrides are produced as amorphous, bulk solids from the slow thermal decomposition of 2,4,6-triazido-1,3,5-triazine [(C3N3)(N3)3]. This energetic molecular azide is thermally unstable and readily decomposes at 185 °C in a high-pressure reactor to produce carbon nitride materials, e.g., C3N4. Under applied nitrogen gas pressure, (C3N3)(N3)3 decomposes to yield a solid with one of the highest reported nitrogen-to-carbon ratios corresponding to C3N5. This azide precursor also decomposes upon rapid heating to 200 °C to form graphite nanoparticles without any retained nitrogen. Spectroscopic evidence (infrared, nuclear magnetic resonance, and ultraviolet−visible) demonstrates that the carbon−nitrogen solids have significant sp2 carbon bonding in a conjugated doubly bonded network. Electron microscopy reveals that these powders have a glassy microstructure with large irregular pores and voids. C3N4 and C3N5 are thermally stable up to 600 °C and sublime to produce carbon nitride thin films on SiO2 and Si substrates. A discussion on possible azide decomposition pathways and carbon nitride structures is presented.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm000570y</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Chemical industry and chemicals ; Chemistry ; Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...) ; Exact sciences and technology ; Inorganic chemistry and origins of life ; Miscellaneous ; Preparations and properties ; Technical ceramics</subject><ispartof>Chemistry of materials, 2000-12, Vol.12 (12), p.3906-3912</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-c32d427214d6779c2607582307e0ed72347aa9cdb8971f0853704f54536727953</citedby><cites>FETCH-LOGICAL-a420t-c32d427214d6779c2607582307e0ed72347aa9cdb8971f0853704f54536727953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm000570y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm000570y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=886057$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillan, Edward G</creatorcontrib><title>Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Nitrogen-rich carbon nitrides are produced as amorphous, bulk solids from the slow thermal decomposition of 2,4,6-triazido-1,3,5-triazine [(C3N3)(N3)3]. This energetic molecular azide is thermally unstable and readily decomposes at 185 °C in a high-pressure reactor to produce carbon nitride materials, e.g., C3N4. Under applied nitrogen gas pressure, (C3N3)(N3)3 decomposes to yield a solid with one of the highest reported nitrogen-to-carbon ratios corresponding to C3N5. This azide precursor also decomposes upon rapid heating to 200 °C to form graphite nanoparticles without any retained nitrogen. Spectroscopic evidence (infrared, nuclear magnetic resonance, and ultraviolet−visible) demonstrates that the carbon−nitrogen solids have significant sp2 carbon bonding in a conjugated doubly bonded network. Electron microscopy reveals that these powders have a glassy microstructure with large irregular pores and voids. C3N4 and C3N5 are thermally stable up to 600 °C and sublime to produce carbon nitride thin films on SiO2 and Si substrates. A discussion on possible azide decomposition pathways and carbon nitride structures is presented.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry</subject><subject>Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...)</subject><subject>Exact sciences and technology</subject><subject>Inorganic chemistry and origins of life</subject><subject>Miscellaneous</subject><subject>Preparations and properties</subject><subject>Technical ceramics</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpt0E1PGzEQBmCrKlJTyoF_YKkCicPSsdfe2RxRykclEhAJKKdaxusFw2ZNxxvR9NezaVBOnCzbz8xoXsb2BRwLkOKHWwCARlh9YgOhJWQaQH5mAyiHmCnUxRf2NaUnANHzcsB-T1dt9-hTSDzWfBI6ig--zW6Ce-QjS_ex_f8YKs8nvnuN9Jx4TXHBbctPW08PvguOj2Pj3bKxxE_-rek19VdKkb6xndo2ye-9n7vs9ux0NrrILq_Of41OLjOrJHSZy2WlJEqhqgJx6GQBqEuZA3rwFcpcobVDV933W4gaSp0jqFornRcocajzXXa46ftC8c_Sp84sQnK-aWzr4zIZiaikztfwaAMdxZTI1-aFwsLSyggw6wTNNsHefn9vapOzTU22dSFtC8qy6F2vso0KqfN_t7-Wnk2BOWozu56a8Z26mIifczPv_cHGW5fMU1xS2wfzwfQ3Z_aJvw</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Gillan, Edward G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20001201</creationdate><title>Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor</title><author>Gillan, Edward G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-c32d427214d6779c2607582307e0ed72347aa9cdb8971f0853704f54536727953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry</topic><topic>Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...)</topic><topic>Exact sciences and technology</topic><topic>Inorganic chemistry and origins of life</topic><topic>Miscellaneous</topic><topic>Preparations and properties</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillan, Edward G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillan, Edward G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2000-12-01</date><risdate>2000</risdate><volume>12</volume><issue>12</issue><spage>3906</spage><epage>3912</epage><pages>3906-3912</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Nitrogen-rich carbon nitrides are produced as amorphous, bulk solids from the slow thermal decomposition of 2,4,6-triazido-1,3,5-triazine [(C3N3)(N3)3]. This energetic molecular azide is thermally unstable and readily decomposes at 185 °C in a high-pressure reactor to produce carbon nitride materials, e.g., C3N4. Under applied nitrogen gas pressure, (C3N3)(N3)3 decomposes to yield a solid with one of the highest reported nitrogen-to-carbon ratios corresponding to C3N5. This azide precursor also decomposes upon rapid heating to 200 °C to form graphite nanoparticles without any retained nitrogen. Spectroscopic evidence (infrared, nuclear magnetic resonance, and ultraviolet−visible) demonstrates that the carbon−nitrogen solids have significant sp2 carbon bonding in a conjugated doubly bonded network. Electron microscopy reveals that these powders have a glassy microstructure with large irregular pores and voids. C3N4 and C3N5 are thermally stable up to 600 °C and sublime to produce carbon nitride thin films on SiO2 and Si substrates. A discussion on possible azide decomposition pathways and carbon nitride structures is presented.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/cm000570y</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2000-12, Vol.12 (12), p.3906-3912 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_27742535 |
source | American Chemical Society Journals |
subjects | Applied sciences Building materials. Ceramics. Glasses Ceramic industries Chemical industry and chemicals Chemistry Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...) Exact sciences and technology Inorganic chemistry and origins of life Miscellaneous Preparations and properties Technical ceramics |
title | Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Nitrogen-Rich%20Carbon%20Nitride%20Networks%20from%20an%20Energetic%20Molecular%20Azide%20Precursor&rft.jtitle=Chemistry%20of%20materials&rft.au=Gillan,%20Edward%20G&rft.date=2000-12-01&rft.volume=12&rft.issue=12&rft.spage=3906&rft.epage=3912&rft.pages=3906-3912&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm000570y&rft_dat=%3Cproquest_cross%3E27742535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27742535&rft_id=info:pmid/&rfr_iscdi=true |