Study of the thermal behavior of alkali-treated jute fibers

Jute fibers were treated with 5% NaOH solution for 2, 4, 6, and 8 h to study the performance of the fibers as a reinforcing material in the composites. Thermal analysis of the fibers was done by the DTG and DSC technique. The moisture desorption was observed at a lower temperature in the case of all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2002-09, Vol.85 (12), p.2594-2599
Hauptverfasser: Ray, Dipa, Sarkar, B. K., Basak, R. K., Rana, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Jute fibers were treated with 5% NaOH solution for 2, 4, 6, and 8 h to study the performance of the fibers as a reinforcing material in the composites. Thermal analysis of the fibers was done by the DTG and DSC technique. The moisture desorption was observed at a lower temperature in the case of all the treated fibers, which might be a result of the increased fineness of the fibers, which provides more surface area for moisture evaporation. The decrease in percentage moisture loss for the fibers treated with alkali for 6 and 8 h could be the result of the increased crystallinity of the fibers. The percentage degradation of the hemicellulose decreased considerably in all the treated fibers, conforming to the fact that the hemicellulose content was lowered on alkali treatment. The decomposition temperature for α‐cellulose was lowered to 348°C from 362.2°C for all the treated fibers, and the residual char formation increased to a significant extent. The enthalpy for the thermal degradation of α‐cellulose showed a decreasing trend for the fibers treated for 2 and 4 h, which could be caused by the initial loosening of the structure, followed by an increase in the enthalpy value in the case of the 6‐ and 8‐h‐alkali‐treated fibers resulting from increased crystallinity, as evident from the X‐ray diffraction. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2594–2599, 2002
ISSN:0021-8995
1097-4628
DOI:10.1002/app.10934