St. Venant-Exner Equations for Near-Critical and Transcritical Flows

The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2002-06, Vol.128 (6), p.579-587
Hauptverfasser: Lyn, D. A, Altinakar, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 6
container_start_page 579
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 128
creator Lyn, D. A
Altinakar, M
description The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance celerity, is not met, yet the direction of propagation of a bed wave apparently changes depending on whether F>1 or F
doi_str_mv 10.1061/(ASCE)0733-9429(2002)128:6(579)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27737930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18401965</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-9b48621429b976d78b5a8a98fdd8304b3567a865d691fd897ce5c5698a14f5453</originalsourceid><addsrcrecordid>eNqFkU9LwzAYh4MoOKffoRd1O3QmzX8PgszOKWMeNsVbyNoUOrp2SzrUb2_CNr3pIQm8PLz58XsAuEZwgCBDN7372TDtQ45xLEkiewmESR8l4pb1KJf9I9BBkuCYSwiPQeeHOwVnzi0hRIRJ0QEPs3YQvZla122cftbGRulmq9uyqV1UNDaaGm3joS3bMtNVpOs8mltdu-wwGVXNhzsHJ4WunLnYv13wOkrnw3E8eXl8Gt5PYk0xaWO5IIIlyIdYSM5yLhZUCy1FkecCQ7LAlHEtGM2ZREUuJM8MzaiPqREpKKG4C652e9e22WyNa9WqdJmpKl2bZutUwjnmEsN_QSQIRJKFjb2_QcYoEcKX5dG7HZrZxjlrCrW25UrbL4WgCkaUCkZUaFqFplUworwRxZQ34hdc7v_SzldX-B6z0v1uwYwRIkOm9x3nMaOWzdbWvlT1PE6nDwJ6c0m4IWT-0KA3zA4Z_o7wDd6aoeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1665488146</pqid></control><display><type>article</type><title>St. Venant-Exner Equations for Near-Critical and Transcritical Flows</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Lyn, D. A ; Altinakar, M</creator><creatorcontrib>Lyn, D. A ; Altinakar, M</creatorcontrib><description>The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance celerity, is not met, yet the direction of propagation of a bed wave apparently changes depending on whether F&gt;1 or F&lt;1. An analysis of the linearized model problem for an infinitesimal bed wave under near-uniform conditions is performed, and qualitative features of the solution are brought out. Under appropriate sediment transport conditions, when F2→1, two bed waves, one traveling upstream and the other traveling downstream, are found to develop from an initially single localized bed perturbation. Simulations of the full unsteady problem were performed with the Preissmann scheme to confirm the linear analysis and to study the effects of nonlinearity and friction. A transcritical case, in which a region where F2&lt;1 is succeeded by a region where F2&gt;1, is also investigated, and the solution exhibits an apparently different behavior than cases where the flow is everywhere sub- or supercritical, but can be understood as a hybrid of the latter cases.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(2002)128:6(579)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydraulic constructions ; Hydrology ; Hydrology. Hydrogeology ; TECHNICAL PAPERS</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2002-06, Vol.128 (6), p.579-587</ispartof><rights>Copyright © 2002 American Society of Civil Engineers</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-9b48621429b976d78b5a8a98fdd8304b3567a865d691fd897ce5c5698a14f5453</citedby><cites>FETCH-LOGICAL-a534t-9b48621429b976d78b5a8a98fdd8304b3567a865d691fd897ce5c5698a14f5453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(2002)128:6(579)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(2002)128:6(579)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13664495$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyn, D. A</creatorcontrib><creatorcontrib>Altinakar, M</creatorcontrib><title>St. Venant-Exner Equations for Near-Critical and Transcritical Flows</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance celerity, is not met, yet the direction of propagation of a bed wave apparently changes depending on whether F&gt;1 or F&lt;1. An analysis of the linearized model problem for an infinitesimal bed wave under near-uniform conditions is performed, and qualitative features of the solution are brought out. Under appropriate sediment transport conditions, when F2→1, two bed waves, one traveling upstream and the other traveling downstream, are found to develop from an initially single localized bed perturbation. Simulations of the full unsteady problem were performed with the Preissmann scheme to confirm the linear analysis and to study the effects of nonlinearity and friction. A transcritical case, in which a region where F2&lt;1 is succeeded by a region where F2&gt;1, is also investigated, and the solution exhibits an apparently different behavior than cases where the flow is everywhere sub- or supercritical, but can be understood as a hybrid of the latter cases.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydraulic constructions</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>TECHNICAL PAPERS</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LwzAYh4MoOKffoRd1O3QmzX8PgszOKWMeNsVbyNoUOrp2SzrUb2_CNr3pIQm8PLz58XsAuEZwgCBDN7372TDtQ45xLEkiewmESR8l4pb1KJf9I9BBkuCYSwiPQeeHOwVnzi0hRIRJ0QEPs3YQvZla122cftbGRulmq9uyqV1UNDaaGm3joS3bMtNVpOs8mltdu-wwGVXNhzsHJ4WunLnYv13wOkrnw3E8eXl8Gt5PYk0xaWO5IIIlyIdYSM5yLhZUCy1FkecCQ7LAlHEtGM2ZREUuJM8MzaiPqREpKKG4C652e9e22WyNa9WqdJmpKl2bZutUwjnmEsN_QSQIRJKFjb2_QcYoEcKX5dG7HZrZxjlrCrW25UrbL4WgCkaUCkZUaFqFplUworwRxZQ34hdc7v_SzldX-B6z0v1uwYwRIkOm9x3nMaOWzdbWvlT1PE6nDwJ6c0m4IWT-0KA3zA4Z_o7wDd6aoeU</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Lyn, D. A</creator><creator>Altinakar, M</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020601</creationdate><title>St. Venant-Exner Equations for Near-Critical and Transcritical Flows</title><author>Lyn, D. A ; Altinakar, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-9b48621429b976d78b5a8a98fdd8304b3567a865d691fd897ce5c5698a14f5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydraulic constructions</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyn, D. A</creatorcontrib><creatorcontrib>Altinakar, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyn, D. A</au><au>Altinakar, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>St. Venant-Exner Equations for Near-Critical and Transcritical Flows</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>128</volume><issue>6</issue><spage>579</spage><epage>587</epage><pages>579-587</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance celerity, is not met, yet the direction of propagation of a bed wave apparently changes depending on whether F&gt;1 or F&lt;1. An analysis of the linearized model problem for an infinitesimal bed wave under near-uniform conditions is performed, and qualitative features of the solution are brought out. Under appropriate sediment transport conditions, when F2→1, two bed waves, one traveling upstream and the other traveling downstream, are found to develop from an initially single localized bed perturbation. Simulations of the full unsteady problem were performed with the Preissmann scheme to confirm the linear analysis and to study the effects of nonlinearity and friction. A transcritical case, in which a region where F2&lt;1 is succeeded by a region where F2&gt;1, is also investigated, and the solution exhibits an apparently different behavior than cases where the flow is everywhere sub- or supercritical, but can be understood as a hybrid of the latter cases.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(2002)128:6(579)</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 2002-06, Vol.128 (6), p.579-587
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_miscellaneous_27737930
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Applied sciences
Buildings. Public works
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hydraulic constructions
Hydrology
Hydrology. Hydrogeology
TECHNICAL PAPERS
title St. Venant-Exner Equations for Near-Critical and Transcritical Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=St.%20Venant-Exner%20Equations%20for%20Near-Critical%20and%20Transcritical%20Flows&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Lyn,%20D.%20A&rft.date=2002-06-01&rft.volume=128&rft.issue=6&rft.spage=579&rft.epage=587&rft.pages=579-587&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(2002)128:6(579)&rft_dat=%3Cproquest_cross%3E18401965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1665488146&rft_id=info:pmid/&rfr_iscdi=true