St. Venant-Exner Equations for Near-Critical and Transcritical Flows
The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance...
Gespeichert in:
Veröffentlicht in: | Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2002-06, Vol.128 (6), p.579-587 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 6 |
container_start_page | 579 |
container_title | Journal of hydraulic engineering (New York, N.Y.) |
container_volume | 128 |
creator | Lyn, D. A Altinakar, M |
description | The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance celerity, is not met, yet the direction of propagation of a bed wave apparently changes depending on whether F>1 or F |
doi_str_mv | 10.1061/(ASCE)0733-9429(2002)128:6(579) |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27737930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18401965</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-9b48621429b976d78b5a8a98fdd8304b3567a865d691fd897ce5c5698a14f5453</originalsourceid><addsrcrecordid>eNqFkU9LwzAYh4MoOKffoRd1O3QmzX8PgszOKWMeNsVbyNoUOrp2SzrUb2_CNr3pIQm8PLz58XsAuEZwgCBDN7372TDtQ45xLEkiewmESR8l4pb1KJf9I9BBkuCYSwiPQeeHOwVnzi0hRIRJ0QEPs3YQvZla122cftbGRulmq9uyqV1UNDaaGm3joS3bMtNVpOs8mltdu-wwGVXNhzsHJ4WunLnYv13wOkrnw3E8eXl8Gt5PYk0xaWO5IIIlyIdYSM5yLhZUCy1FkecCQ7LAlHEtGM2ZREUuJM8MzaiPqREpKKG4C652e9e22WyNa9WqdJmpKl2bZutUwjnmEsN_QSQIRJKFjb2_QcYoEcKX5dG7HZrZxjlrCrW25UrbL4WgCkaUCkZUaFqFplUworwRxZQ34hdc7v_SzldX-B6z0v1uwYwRIkOm9x3nMaOWzdbWvlT1PE6nDwJ6c0m4IWT-0KA3zA4Z_o7wDd6aoeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1665488146</pqid></control><display><type>article</type><title>St. Venant-Exner Equations for Near-Critical and Transcritical Flows</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Lyn, D. A ; Altinakar, M</creator><creatorcontrib>Lyn, D. A ; Altinakar, M</creatorcontrib><description>The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance celerity, is not met, yet the direction of propagation of a bed wave apparently changes depending on whether F>1 or F<1. An analysis of the linearized model problem for an infinitesimal bed wave under near-uniform conditions is performed, and qualitative features of the solution are brought out. Under appropriate sediment transport conditions, when F2→1, two bed waves, one traveling upstream and the other traveling downstream, are found to develop from an initially single localized bed perturbation. Simulations of the full unsteady problem were performed with the Preissmann scheme to confirm the linear analysis and to study the effects of nonlinearity and friction. A transcritical case, in which a region where F2<1 is succeeded by a region where F2>1, is also investigated, and the solution exhibits an apparently different behavior than cases where the flow is everywhere sub- or supercritical, but can be understood as a hybrid of the latter cases.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(2002)128:6(579)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydraulic constructions ; Hydrology ; Hydrology. Hydrogeology ; TECHNICAL PAPERS</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2002-06, Vol.128 (6), p.579-587</ispartof><rights>Copyright © 2002 American Society of Civil Engineers</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-9b48621429b976d78b5a8a98fdd8304b3567a865d691fd897ce5c5698a14f5453</citedby><cites>FETCH-LOGICAL-a534t-9b48621429b976d78b5a8a98fdd8304b3567a865d691fd897ce5c5698a14f5453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(2002)128:6(579)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(2002)128:6(579)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13664495$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyn, D. A</creatorcontrib><creatorcontrib>Altinakar, M</creatorcontrib><title>St. Venant-Exner Equations for Near-Critical and Transcritical Flows</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance celerity, is not met, yet the direction of propagation of a bed wave apparently changes depending on whether F>1 or F<1. An analysis of the linearized model problem for an infinitesimal bed wave under near-uniform conditions is performed, and qualitative features of the solution are brought out. Under appropriate sediment transport conditions, when F2→1, two bed waves, one traveling upstream and the other traveling downstream, are found to develop from an initially single localized bed perturbation. Simulations of the full unsteady problem were performed with the Preissmann scheme to confirm the linear analysis and to study the effects of nonlinearity and friction. A transcritical case, in which a region where F2<1 is succeeded by a region where F2>1, is also investigated, and the solution exhibits an apparently different behavior than cases where the flow is everywhere sub- or supercritical, but can be understood as a hybrid of the latter cases.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydraulic constructions</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>TECHNICAL PAPERS</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LwzAYh4MoOKffoRd1O3QmzX8PgszOKWMeNsVbyNoUOrp2SzrUb2_CNr3pIQm8PLz58XsAuEZwgCBDN7372TDtQ45xLEkiewmESR8l4pb1KJf9I9BBkuCYSwiPQeeHOwVnzi0hRIRJ0QEPs3YQvZla122cftbGRulmq9uyqV1UNDaaGm3joS3bMtNVpOs8mltdu-wwGVXNhzsHJ4WunLnYv13wOkrnw3E8eXl8Gt5PYk0xaWO5IIIlyIdYSM5yLhZUCy1FkecCQ7LAlHEtGM2ZREUuJM8MzaiPqREpKKG4C652e9e22WyNa9WqdJmpKl2bZutUwjnmEsN_QSQIRJKFjb2_QcYoEcKX5dG7HZrZxjlrCrW25UrbL4WgCkaUCkZUaFqFplUworwRxZQ34hdc7v_SzldX-B6z0v1uwYwRIkOm9x3nMaOWzdbWvlT1PE6nDwJ6c0m4IWT-0KA3zA4Z_o7wDd6aoeU</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Lyn, D. A</creator><creator>Altinakar, M</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020601</creationdate><title>St. Venant-Exner Equations for Near-Critical and Transcritical Flows</title><author>Lyn, D. A ; Altinakar, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-9b48621429b976d78b5a8a98fdd8304b3567a865d691fd897ce5c5698a14f5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydraulic constructions</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyn, D. A</creatorcontrib><creatorcontrib>Altinakar, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyn, D. A</au><au>Altinakar, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>St. Venant-Exner Equations for Near-Critical and Transcritical Flows</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>128</volume><issue>6</issue><spage>579</spage><epage>587</epage><pages>579-587</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>The solution of the St. Venant-Exner equations as a model for bed evolution is studied under conditions when the Froude number, F, approaches unity, and the quasi-steady model becomes singular. It is confirmed that the strict criterion for critical flow, the vanishing of a water surface disturbance celerity, is not met, yet the direction of propagation of a bed wave apparently changes depending on whether F>1 or F<1. An analysis of the linearized model problem for an infinitesimal bed wave under near-uniform conditions is performed, and qualitative features of the solution are brought out. Under appropriate sediment transport conditions, when F2→1, two bed waves, one traveling upstream and the other traveling downstream, are found to develop from an initially single localized bed perturbation. Simulations of the full unsteady problem were performed with the Preissmann scheme to confirm the linear analysis and to study the effects of nonlinearity and friction. A transcritical case, in which a region where F2<1 is succeeded by a region where F2>1, is also investigated, and the solution exhibits an apparently different behavior than cases where the flow is everywhere sub- or supercritical, but can be understood as a hybrid of the latter cases.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(2002)128:6(579)</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9429 |
ispartof | Journal of hydraulic engineering (New York, N.Y.), 2002-06, Vol.128 (6), p.579-587 |
issn | 0733-9429 1943-7900 |
language | eng |
recordid | cdi_proquest_miscellaneous_27737930 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Applied sciences Buildings. Public works Earth sciences Earth, ocean, space Exact sciences and technology Hydraulic constructions Hydrology Hydrology. Hydrogeology TECHNICAL PAPERS |
title | St. Venant-Exner Equations for Near-Critical and Transcritical Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=St.%20Venant-Exner%20Equations%20for%20Near-Critical%20and%20Transcritical%20Flows&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Lyn,%20D.%20A&rft.date=2002-06-01&rft.volume=128&rft.issue=6&rft.spage=579&rft.epage=587&rft.pages=579-587&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(2002)128:6(579)&rft_dat=%3Cproquest_cross%3E18401965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1665488146&rft_id=info:pmid/&rfr_iscdi=true |