Multifunctional Nanogenerator‐Integrated Metamaterial Concrete Systems for Smart Civil Infrastructure

Creating multifunctional concrete materials with advanced functionalities and mechanical tunability is a critical step toward reimagining the traditional civil infrastructure systems. Here, the concept of nanogenerator‐integrated mechanical metamaterial concrete is presented to design lightweight an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-04, Vol.35 (14), p.e2211027-n/a
Hauptverfasser: Barri, Kaveh, Zhang, Qianyun, Kline, Jake, Lu, Wenyun, Luo, Jianzhe, Sun, Zhe, Taylor, Brandon E., Sachs, Steven G., Khazanovich, Lev, Wang, Zhong Lin, Alavi, Amir H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e2211027
container_title Advanced materials (Weinheim)
container_volume 35
creator Barri, Kaveh
Zhang, Qianyun
Kline, Jake
Lu, Wenyun
Luo, Jianzhe
Sun, Zhe
Taylor, Brandon E.
Sachs, Steven G.
Khazanovich, Lev
Wang, Zhong Lin
Alavi, Amir H.
description Creating multifunctional concrete materials with advanced functionalities and mechanical tunability is a critical step toward reimagining the traditional civil infrastructure systems. Here, the concept of nanogenerator‐integrated mechanical metamaterial concrete is presented to design lightweight and mechanically tunable concrete systems with energy harvesting and sensing functionalities. The proposed metamaterial concrete systems are created via integrating the mechanical metamaterial and nano‐energy‐harvesting paradigms. These advanced materials are composed of reinforcement auxetic polymer lattices with snap‐through buckling behavior fully embedded inside a conductive cement matrix. We rationally design their composite structures to induce contact‐electrification between the layers under mechanical excitations/triggering. The conductive cement enhanced with graphite powder serves as the electrode in the proposed systems, while providing the desired mechanical performance. Experimental studies are conducted to investigate the mechanical and electrical properties of the designed prototypes. The metamaterial concrete systems are tuned to achieve up to 15% compressibility under cycling loading. The power output of the nanogenerator‐integrated metamaterial concrete prototypes reaches 330 µW. Furthermore, the self‐powered sensing functionality of the nanogenerator concrete systems for distributed health monitoring of large‐scale concrete structures is demonstrated. The metamaterial concrete paradigm can possibly enable the design of smart civil infrastructure systems with a broad range of advanced functionalities. A new class of lightweight composite metamaterial concrete with unprecedented mechanical properties and energy harvesting and sensing functionalities is presented. The metamaterial concrete systems are composed of auxetic lattices embedded inside a conductive cement matrix. They are tuned to achieve up to 15% compressibility. The power output of the nanogenerator‐integrated metamaterial concrete prototypes reaches 330 µW.
doi_str_mv 10.1002/adma.202211027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2773125369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795929581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-596c2a048a5cb4a9cd7082b5376ac3616d7e84851eeed917b7704c3ccb5f09063</originalsourceid><addsrcrecordid>eNqF0c1O3DAUBWALtYLhZ8sSRWLDJtNrO7bj5WhK6UhMuwDWkePcjIKSGGynaHY8Qp-xT1KPhlKpm65sS989ku8h5JzCnAKwT6YZzJwBY5QCUwdkRgWjeQFafCAz0FzkWhblETkO4REAtAR5SI64VLykks7IZj31sWun0cbOjabPvpnRbXBEb6Lzv15_rsaIm_TAJltjNEO6-S65pRutx4jZ3TZEHELWOp_dDcbHbNn96PpsNbbehOgnGyePp-Rja_qAZ2_nCXn4cn2__Jrffr9ZLRe3ueWKq1xoaZmBojTC1oXRtlFQslpwJY3lkspGYVmUgiJio6mqlYLCcmtr0YIGyU_I1T73ybvnCUOshi5Y7HszoptCxZTilAkudaKX_9BHN_m0g53SQjMtSprUfK-sdyF4bKsn36VvbisK1a6CaldB9V5BGrh4i53qAZt3_mfnCeg9eOl63P4nrlp8Xi_-hv8GBmaUjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795929581</pqid></control><display><type>article</type><title>Multifunctional Nanogenerator‐Integrated Metamaterial Concrete Systems for Smart Civil Infrastructure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barri, Kaveh ; Zhang, Qianyun ; Kline, Jake ; Lu, Wenyun ; Luo, Jianzhe ; Sun, Zhe ; Taylor, Brandon E. ; Sachs, Steven G. ; Khazanovich, Lev ; Wang, Zhong Lin ; Alavi, Amir H.</creator><creatorcontrib>Barri, Kaveh ; Zhang, Qianyun ; Kline, Jake ; Lu, Wenyun ; Luo, Jianzhe ; Sun, Zhe ; Taylor, Brandon E. ; Sachs, Steven G. ; Khazanovich, Lev ; Wang, Zhong Lin ; Alavi, Amir H.</creatorcontrib><description>Creating multifunctional concrete materials with advanced functionalities and mechanical tunability is a critical step toward reimagining the traditional civil infrastructure systems. Here, the concept of nanogenerator‐integrated mechanical metamaterial concrete is presented to design lightweight and mechanically tunable concrete systems with energy harvesting and sensing functionalities. The proposed metamaterial concrete systems are created via integrating the mechanical metamaterial and nano‐energy‐harvesting paradigms. These advanced materials are composed of reinforcement auxetic polymer lattices with snap‐through buckling behavior fully embedded inside a conductive cement matrix. We rationally design their composite structures to induce contact‐electrification between the layers under mechanical excitations/triggering. The conductive cement enhanced with graphite powder serves as the electrode in the proposed systems, while providing the desired mechanical performance. Experimental studies are conducted to investigate the mechanical and electrical properties of the designed prototypes. The metamaterial concrete systems are tuned to achieve up to 15% compressibility under cycling loading. The power output of the nanogenerator‐integrated metamaterial concrete prototypes reaches 330 µW. Furthermore, the self‐powered sensing functionality of the nanogenerator concrete systems for distributed health monitoring of large‐scale concrete structures is demonstrated. The metamaterial concrete paradigm can possibly enable the design of smart civil infrastructure systems with a broad range of advanced functionalities. A new class of lightweight composite metamaterial concrete with unprecedented mechanical properties and energy harvesting and sensing functionalities is presented. The metamaterial concrete systems are composed of auxetic lattices embedded inside a conductive cement matrix. They are tuned to achieve up to 15% compressibility. The power output of the nanogenerator‐integrated metamaterial concrete prototypes reaches 330 µW.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202211027</identifier><identifier>PMID: 36738161</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Composite structures ; Compressibility ; Concrete ; Concrete structures ; Electric contacts ; Electrical properties ; Energy harvesting ; Fourier transforms ; Infrastructure ; Lattices ; Materials science ; mechanical metamaterials ; Mechanical properties ; Metamaterials ; multifunctional concrete ; Nanogenerators ; Prototypes ; sensing ; stiffness ; triboelectric nanogenerators</subject><ispartof>Advanced materials (Weinheim), 2023-04, Vol.35 (14), p.e2211027-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-596c2a048a5cb4a9cd7082b5376ac3616d7e84851eeed917b7704c3ccb5f09063</citedby><cites>FETCH-LOGICAL-c3737-596c2a048a5cb4a9cd7082b5376ac3616d7e84851eeed917b7704c3ccb5f09063</cites><orcidid>0000-0002-7593-8509 ; 0000-0003-4279-9730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202211027$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202211027$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36738161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barri, Kaveh</creatorcontrib><creatorcontrib>Zhang, Qianyun</creatorcontrib><creatorcontrib>Kline, Jake</creatorcontrib><creatorcontrib>Lu, Wenyun</creatorcontrib><creatorcontrib>Luo, Jianzhe</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><creatorcontrib>Taylor, Brandon E.</creatorcontrib><creatorcontrib>Sachs, Steven G.</creatorcontrib><creatorcontrib>Khazanovich, Lev</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Alavi, Amir H.</creatorcontrib><title>Multifunctional Nanogenerator‐Integrated Metamaterial Concrete Systems for Smart Civil Infrastructure</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Creating multifunctional concrete materials with advanced functionalities and mechanical tunability is a critical step toward reimagining the traditional civil infrastructure systems. Here, the concept of nanogenerator‐integrated mechanical metamaterial concrete is presented to design lightweight and mechanically tunable concrete systems with energy harvesting and sensing functionalities. The proposed metamaterial concrete systems are created via integrating the mechanical metamaterial and nano‐energy‐harvesting paradigms. These advanced materials are composed of reinforcement auxetic polymer lattices with snap‐through buckling behavior fully embedded inside a conductive cement matrix. We rationally design their composite structures to induce contact‐electrification between the layers under mechanical excitations/triggering. The conductive cement enhanced with graphite powder serves as the electrode in the proposed systems, while providing the desired mechanical performance. Experimental studies are conducted to investigate the mechanical and electrical properties of the designed prototypes. The metamaterial concrete systems are tuned to achieve up to 15% compressibility under cycling loading. The power output of the nanogenerator‐integrated metamaterial concrete prototypes reaches 330 µW. Furthermore, the self‐powered sensing functionality of the nanogenerator concrete systems for distributed health monitoring of large‐scale concrete structures is demonstrated. The metamaterial concrete paradigm can possibly enable the design of smart civil infrastructure systems with a broad range of advanced functionalities. A new class of lightweight composite metamaterial concrete with unprecedented mechanical properties and energy harvesting and sensing functionalities is presented. The metamaterial concrete systems are composed of auxetic lattices embedded inside a conductive cement matrix. They are tuned to achieve up to 15% compressibility. The power output of the nanogenerator‐integrated metamaterial concrete prototypes reaches 330 µW.</description><subject>Composite structures</subject><subject>Compressibility</subject><subject>Concrete</subject><subject>Concrete structures</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>Energy harvesting</subject><subject>Fourier transforms</subject><subject>Infrastructure</subject><subject>Lattices</subject><subject>Materials science</subject><subject>mechanical metamaterials</subject><subject>Mechanical properties</subject><subject>Metamaterials</subject><subject>multifunctional concrete</subject><subject>Nanogenerators</subject><subject>Prototypes</subject><subject>sensing</subject><subject>stiffness</subject><subject>triboelectric nanogenerators</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0c1O3DAUBWALtYLhZ8sSRWLDJtNrO7bj5WhK6UhMuwDWkePcjIKSGGynaHY8Qp-xT1KPhlKpm65sS989ku8h5JzCnAKwT6YZzJwBY5QCUwdkRgWjeQFafCAz0FzkWhblETkO4REAtAR5SI64VLykks7IZj31sWun0cbOjabPvpnRbXBEb6Lzv15_rsaIm_TAJltjNEO6-S65pRutx4jZ3TZEHELWOp_dDcbHbNn96PpsNbbehOgnGyePp-Rja_qAZ2_nCXn4cn2__Jrffr9ZLRe3ueWKq1xoaZmBojTC1oXRtlFQslpwJY3lkspGYVmUgiJio6mqlYLCcmtr0YIGyU_I1T73ybvnCUOshi5Y7HszoptCxZTilAkudaKX_9BHN_m0g53SQjMtSprUfK-sdyF4bKsn36VvbisK1a6CaldB9V5BGrh4i53qAZt3_mfnCeg9eOl63P4nrlp8Xi_-hv8GBmaUjw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Barri, Kaveh</creator><creator>Zhang, Qianyun</creator><creator>Kline, Jake</creator><creator>Lu, Wenyun</creator><creator>Luo, Jianzhe</creator><creator>Sun, Zhe</creator><creator>Taylor, Brandon E.</creator><creator>Sachs, Steven G.</creator><creator>Khazanovich, Lev</creator><creator>Wang, Zhong Lin</creator><creator>Alavi, Amir H.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7593-8509</orcidid><orcidid>https://orcid.org/0000-0003-4279-9730</orcidid></search><sort><creationdate>20230401</creationdate><title>Multifunctional Nanogenerator‐Integrated Metamaterial Concrete Systems for Smart Civil Infrastructure</title><author>Barri, Kaveh ; Zhang, Qianyun ; Kline, Jake ; Lu, Wenyun ; Luo, Jianzhe ; Sun, Zhe ; Taylor, Brandon E. ; Sachs, Steven G. ; Khazanovich, Lev ; Wang, Zhong Lin ; Alavi, Amir H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-596c2a048a5cb4a9cd7082b5376ac3616d7e84851eeed917b7704c3ccb5f09063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composite structures</topic><topic>Compressibility</topic><topic>Concrete</topic><topic>Concrete structures</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>Energy harvesting</topic><topic>Fourier transforms</topic><topic>Infrastructure</topic><topic>Lattices</topic><topic>Materials science</topic><topic>mechanical metamaterials</topic><topic>Mechanical properties</topic><topic>Metamaterials</topic><topic>multifunctional concrete</topic><topic>Nanogenerators</topic><topic>Prototypes</topic><topic>sensing</topic><topic>stiffness</topic><topic>triboelectric nanogenerators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barri, Kaveh</creatorcontrib><creatorcontrib>Zhang, Qianyun</creatorcontrib><creatorcontrib>Kline, Jake</creatorcontrib><creatorcontrib>Lu, Wenyun</creatorcontrib><creatorcontrib>Luo, Jianzhe</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><creatorcontrib>Taylor, Brandon E.</creatorcontrib><creatorcontrib>Sachs, Steven G.</creatorcontrib><creatorcontrib>Khazanovich, Lev</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Alavi, Amir H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barri, Kaveh</au><au>Zhang, Qianyun</au><au>Kline, Jake</au><au>Lu, Wenyun</au><au>Luo, Jianzhe</au><au>Sun, Zhe</au><au>Taylor, Brandon E.</au><au>Sachs, Steven G.</au><au>Khazanovich, Lev</au><au>Wang, Zhong Lin</au><au>Alavi, Amir H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Nanogenerator‐Integrated Metamaterial Concrete Systems for Smart Civil Infrastructure</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>35</volume><issue>14</issue><spage>e2211027</spage><epage>n/a</epage><pages>e2211027-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Creating multifunctional concrete materials with advanced functionalities and mechanical tunability is a critical step toward reimagining the traditional civil infrastructure systems. Here, the concept of nanogenerator‐integrated mechanical metamaterial concrete is presented to design lightweight and mechanically tunable concrete systems with energy harvesting and sensing functionalities. The proposed metamaterial concrete systems are created via integrating the mechanical metamaterial and nano‐energy‐harvesting paradigms. These advanced materials are composed of reinforcement auxetic polymer lattices with snap‐through buckling behavior fully embedded inside a conductive cement matrix. We rationally design their composite structures to induce contact‐electrification between the layers under mechanical excitations/triggering. The conductive cement enhanced with graphite powder serves as the electrode in the proposed systems, while providing the desired mechanical performance. Experimental studies are conducted to investigate the mechanical and electrical properties of the designed prototypes. The metamaterial concrete systems are tuned to achieve up to 15% compressibility under cycling loading. The power output of the nanogenerator‐integrated metamaterial concrete prototypes reaches 330 µW. Furthermore, the self‐powered sensing functionality of the nanogenerator concrete systems for distributed health monitoring of large‐scale concrete structures is demonstrated. The metamaterial concrete paradigm can possibly enable the design of smart civil infrastructure systems with a broad range of advanced functionalities. A new class of lightweight composite metamaterial concrete with unprecedented mechanical properties and energy harvesting and sensing functionalities is presented. The metamaterial concrete systems are composed of auxetic lattices embedded inside a conductive cement matrix. They are tuned to achieve up to 15% compressibility. The power output of the nanogenerator‐integrated metamaterial concrete prototypes reaches 330 µW.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36738161</pmid><doi>10.1002/adma.202211027</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7593-8509</orcidid><orcidid>https://orcid.org/0000-0003-4279-9730</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-04, Vol.35 (14), p.e2211027-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2773125369
source Wiley Online Library Journals Frontfile Complete
subjects Composite structures
Compressibility
Concrete
Concrete structures
Electric contacts
Electrical properties
Energy harvesting
Fourier transforms
Infrastructure
Lattices
Materials science
mechanical metamaterials
Mechanical properties
Metamaterials
multifunctional concrete
Nanogenerators
Prototypes
sensing
stiffness
triboelectric nanogenerators
title Multifunctional Nanogenerator‐Integrated Metamaterial Concrete Systems for Smart Civil Infrastructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Nanogenerator%E2%80%90Integrated%20Metamaterial%20Concrete%20Systems%20for%20Smart%20Civil%20Infrastructure&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Barri,%20Kaveh&rft.date=2023-04-01&rft.volume=35&rft.issue=14&rft.spage=e2211027&rft.epage=n/a&rft.pages=e2211027-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202211027&rft_dat=%3Cproquest_cross%3E2795929581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795929581&rft_id=info:pmid/36738161&rfr_iscdi=true