Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues

Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-05, Vol.35 (18), p.e2210034-n/a
Hauptverfasser: Makvandi, Pooyan, Shabani, Majid, Rabiee, Navid, Anjani, Qonita Kurnia, Maleki, Aziz, Zare, Ehsan Nazarzadeh, Sabri, Akmal Hidayat Bin, De Pasquale, Daniele, Koskinopoulou, Maria, Sharifi, Esmaeel, Sartorius, Rossella, Seyedhamzeh, Mohammad, Bochani, Shayesteh, Hirata, Ikue, Paiva‐Santos, Ana Cláudia, Mattos, Leonardo S., Donnelly, Ryan F., Mattoli, Virgilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e2210034
container_title Advanced materials (Weinheim)
container_volume 35
creator Makvandi, Pooyan
Shabani, Majid
Rabiee, Navid
Anjani, Qonita Kurnia
Maleki, Aziz
Zare, Ehsan Nazarzadeh
Sabri, Akmal Hidayat Bin
De Pasquale, Daniele
Koskinopoulou, Maria
Sharifi, Esmaeel
Sartorius, Rossella
Seyedhamzeh, Mohammad
Bochani, Shayesteh
Hirata, Ikue
Paiva‐Santos, Ana Cláudia
Mattos, Leonardo S.
Donnelly, Ryan F.
Mattoli, Virgilio
description Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof‐of‐concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water‐rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near‐infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns. Tissue models based on hydrogel/silicone are prepared for different applications in biomedical sectors. Such customized tissue surrogates can be employed as a platform to evaluate the ability of microneedle insertion, the diffusion of drugs, the activity of photothermal agents, as well as the performance of ultrasound bioimaging.
doi_str_mv 10.1002/adma.202210034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2773122909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773122909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-c2cdabd1fac9b08c44124e749edd8295b68d3e82fa25b8f781af5e434b57f3613</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EotuFK0dkiQuHZrEd54-5Rd0FVuqKlWi5Rk4yTl058WInC_tN-3FwmlIkLpw8Hv_mzZMfQm8oWVFC2AfZdHLFCGPhFvNnaEETRiNORPIcLYiIk0ikPD9D597fEUJEStKX6CxOs1gkgi7Q_aZvdQ_gdN9i2Td4DUcw9tBBP2CrsMTX2vsR8M42YLCyDg-3gDdHaUY5aNtP0E7XzgaRxgDeQw-Dm5-KShs9nC7w2o0tXmulRh_6F3h_awcbdFwnDS7qQR8fsGn_jQnT3o6h3HYyeGs_4gLvne20nzx-G52zrRwADxZvfuHv-mgfBrf9XM9-_Sv0Qknj4fXjuUQ3nzbXl1-iq6-ft5fFVVRzGvOoZnUjq4YqWYuK5DXnlHHIuICmyZlIqjRvYsiZkiypcpXlVKoEeMyrJFNxSuMlej_rHpz9EfYOZTBagzGyBzv6kmVZTBkTIYslevcPemdH1wd3JcuJIJQwkQZqNVPhT713oMqD0510p5KScsq8nDIvnzIPA28fZceqg-YJ_xNyAMQM_NQGTv-RK4v1rvgr_htB0LuB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809010296</pqid></control><display><type>article</type><title>Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Makvandi, Pooyan ; Shabani, Majid ; Rabiee, Navid ; Anjani, Qonita Kurnia ; Maleki, Aziz ; Zare, Ehsan Nazarzadeh ; Sabri, Akmal Hidayat Bin ; De Pasquale, Daniele ; Koskinopoulou, Maria ; Sharifi, Esmaeel ; Sartorius, Rossella ; Seyedhamzeh, Mohammad ; Bochani, Shayesteh ; Hirata, Ikue ; Paiva‐Santos, Ana Cláudia ; Mattos, Leonardo S. ; Donnelly, Ryan F. ; Mattoli, Virgilio</creator><creatorcontrib>Makvandi, Pooyan ; Shabani, Majid ; Rabiee, Navid ; Anjani, Qonita Kurnia ; Maleki, Aziz ; Zare, Ehsan Nazarzadeh ; Sabri, Akmal Hidayat Bin ; De Pasquale, Daniele ; Koskinopoulou, Maria ; Sharifi, Esmaeel ; Sartorius, Rossella ; Seyedhamzeh, Mohammad ; Bochani, Shayesteh ; Hirata, Ikue ; Paiva‐Santos, Ana Cláudia ; Mattos, Leonardo S. ; Donnelly, Ryan F. ; Mattoli, Virgilio</creatorcontrib><description>Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof‐of‐concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water‐rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near‐infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns. Tissue models based on hydrogel/silicone are prepared for different applications in biomedical sectors. Such customized tissue surrogates can be employed as a platform to evaluate the ability of microneedle insertion, the diffusion of drugs, the activity of photothermal agents, as well as the performance of ultrasound bioimaging.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202210034</identifier><identifier>PMID: 36739591</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Aqueous solutions ; Artificial tissues ; Biomechanics ; Biomedical materials ; Diffusion layers ; drug delivery models ; drug deposition ; drug release profiles ; Epidermis ; Evaluation ; Hydrophobicity ; In vivo methods and tests ; Infrared lasers ; Laser beam heating ; Materials science ; Medical imaging ; Mice ; microneedle patch penetration ; Needles ; photothermal activity ; Regulatory agencies ; Silicones - chemistry ; Skin - diagnostic imaging ; skin model ; tissue models ; Ultrasonic imaging ; Ultrasonography - methods</subject><ispartof>Advanced materials (Weinheim), 2023-05, Vol.35 (18), p.e2210034-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-c2cdabd1fac9b08c44124e749edd8295b68d3e82fa25b8f781af5e434b57f3613</citedby><cites>FETCH-LOGICAL-c4134-c2cdabd1fac9b08c44124e749edd8295b68d3e82fa25b8f781af5e434b57f3613</cites><orcidid>0000-0002-6945-8541 ; 0000-0003-2456-0961 ; 0000-0002-0766-4147 ; 0000-0002-4809-550X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202210034$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202210034$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36739591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makvandi, Pooyan</creatorcontrib><creatorcontrib>Shabani, Majid</creatorcontrib><creatorcontrib>Rabiee, Navid</creatorcontrib><creatorcontrib>Anjani, Qonita Kurnia</creatorcontrib><creatorcontrib>Maleki, Aziz</creatorcontrib><creatorcontrib>Zare, Ehsan Nazarzadeh</creatorcontrib><creatorcontrib>Sabri, Akmal Hidayat Bin</creatorcontrib><creatorcontrib>De Pasquale, Daniele</creatorcontrib><creatorcontrib>Koskinopoulou, Maria</creatorcontrib><creatorcontrib>Sharifi, Esmaeel</creatorcontrib><creatorcontrib>Sartorius, Rossella</creatorcontrib><creatorcontrib>Seyedhamzeh, Mohammad</creatorcontrib><creatorcontrib>Bochani, Shayesteh</creatorcontrib><creatorcontrib>Hirata, Ikue</creatorcontrib><creatorcontrib>Paiva‐Santos, Ana Cláudia</creatorcontrib><creatorcontrib>Mattos, Leonardo S.</creatorcontrib><creatorcontrib>Donnelly, Ryan F.</creatorcontrib><creatorcontrib>Mattoli, Virgilio</creatorcontrib><title>Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof‐of‐concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water‐rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near‐infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns. Tissue models based on hydrogel/silicone are prepared for different applications in biomedical sectors. Such customized tissue surrogates can be employed as a platform to evaluate the ability of microneedle insertion, the diffusion of drugs, the activity of photothermal agents, as well as the performance of ultrasound bioimaging.</description><subject>Animals</subject><subject>Aqueous solutions</subject><subject>Artificial tissues</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Diffusion layers</subject><subject>drug delivery models</subject><subject>drug deposition</subject><subject>drug release profiles</subject><subject>Epidermis</subject><subject>Evaluation</subject><subject>Hydrophobicity</subject><subject>In vivo methods and tests</subject><subject>Infrared lasers</subject><subject>Laser beam heating</subject><subject>Materials science</subject><subject>Medical imaging</subject><subject>Mice</subject><subject>microneedle patch penetration</subject><subject>Needles</subject><subject>photothermal activity</subject><subject>Regulatory agencies</subject><subject>Silicones - chemistry</subject><subject>Skin - diagnostic imaging</subject><subject>skin model</subject><subject>tissue models</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EotuFK0dkiQuHZrEd54-5Rd0FVuqKlWi5Rk4yTl058WInC_tN-3FwmlIkLpw8Hv_mzZMfQm8oWVFC2AfZdHLFCGPhFvNnaEETRiNORPIcLYiIk0ikPD9D597fEUJEStKX6CxOs1gkgi7Q_aZvdQ_gdN9i2Td4DUcw9tBBP2CrsMTX2vsR8M42YLCyDg-3gDdHaUY5aNtP0E7XzgaRxgDeQw-Dm5-KShs9nC7w2o0tXmulRh_6F3h_awcbdFwnDS7qQR8fsGn_jQnT3o6h3HYyeGs_4gLvne20nzx-G52zrRwADxZvfuHv-mgfBrf9XM9-_Sv0Qknj4fXjuUQ3nzbXl1-iq6-ft5fFVVRzGvOoZnUjq4YqWYuK5DXnlHHIuICmyZlIqjRvYsiZkiypcpXlVKoEeMyrJFNxSuMlej_rHpz9EfYOZTBagzGyBzv6kmVZTBkTIYslevcPemdH1wd3JcuJIJQwkQZqNVPhT713oMqD0510p5KScsq8nDIvnzIPA28fZceqg-YJ_xNyAMQM_NQGTv-RK4v1rvgr_htB0LuB</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Makvandi, Pooyan</creator><creator>Shabani, Majid</creator><creator>Rabiee, Navid</creator><creator>Anjani, Qonita Kurnia</creator><creator>Maleki, Aziz</creator><creator>Zare, Ehsan Nazarzadeh</creator><creator>Sabri, Akmal Hidayat Bin</creator><creator>De Pasquale, Daniele</creator><creator>Koskinopoulou, Maria</creator><creator>Sharifi, Esmaeel</creator><creator>Sartorius, Rossella</creator><creator>Seyedhamzeh, Mohammad</creator><creator>Bochani, Shayesteh</creator><creator>Hirata, Ikue</creator><creator>Paiva‐Santos, Ana Cláudia</creator><creator>Mattos, Leonardo S.</creator><creator>Donnelly, Ryan F.</creator><creator>Mattoli, Virgilio</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6945-8541</orcidid><orcidid>https://orcid.org/0000-0003-2456-0961</orcidid><orcidid>https://orcid.org/0000-0002-0766-4147</orcidid><orcidid>https://orcid.org/0000-0002-4809-550X</orcidid></search><sort><creationdate>20230501</creationdate><title>Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues</title><author>Makvandi, Pooyan ; Shabani, Majid ; Rabiee, Navid ; Anjani, Qonita Kurnia ; Maleki, Aziz ; Zare, Ehsan Nazarzadeh ; Sabri, Akmal Hidayat Bin ; De Pasquale, Daniele ; Koskinopoulou, Maria ; Sharifi, Esmaeel ; Sartorius, Rossella ; Seyedhamzeh, Mohammad ; Bochani, Shayesteh ; Hirata, Ikue ; Paiva‐Santos, Ana Cláudia ; Mattos, Leonardo S. ; Donnelly, Ryan F. ; Mattoli, Virgilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-c2cdabd1fac9b08c44124e749edd8295b68d3e82fa25b8f781af5e434b57f3613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Aqueous solutions</topic><topic>Artificial tissues</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Diffusion layers</topic><topic>drug delivery models</topic><topic>drug deposition</topic><topic>drug release profiles</topic><topic>Epidermis</topic><topic>Evaluation</topic><topic>Hydrophobicity</topic><topic>In vivo methods and tests</topic><topic>Infrared lasers</topic><topic>Laser beam heating</topic><topic>Materials science</topic><topic>Medical imaging</topic><topic>Mice</topic><topic>microneedle patch penetration</topic><topic>Needles</topic><topic>photothermal activity</topic><topic>Regulatory agencies</topic><topic>Silicones - chemistry</topic><topic>Skin - diagnostic imaging</topic><topic>skin model</topic><topic>tissue models</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makvandi, Pooyan</creatorcontrib><creatorcontrib>Shabani, Majid</creatorcontrib><creatorcontrib>Rabiee, Navid</creatorcontrib><creatorcontrib>Anjani, Qonita Kurnia</creatorcontrib><creatorcontrib>Maleki, Aziz</creatorcontrib><creatorcontrib>Zare, Ehsan Nazarzadeh</creatorcontrib><creatorcontrib>Sabri, Akmal Hidayat Bin</creatorcontrib><creatorcontrib>De Pasquale, Daniele</creatorcontrib><creatorcontrib>Koskinopoulou, Maria</creatorcontrib><creatorcontrib>Sharifi, Esmaeel</creatorcontrib><creatorcontrib>Sartorius, Rossella</creatorcontrib><creatorcontrib>Seyedhamzeh, Mohammad</creatorcontrib><creatorcontrib>Bochani, Shayesteh</creatorcontrib><creatorcontrib>Hirata, Ikue</creatorcontrib><creatorcontrib>Paiva‐Santos, Ana Cláudia</creatorcontrib><creatorcontrib>Mattos, Leonardo S.</creatorcontrib><creatorcontrib>Donnelly, Ryan F.</creatorcontrib><creatorcontrib>Mattoli, Virgilio</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makvandi, Pooyan</au><au>Shabani, Majid</au><au>Rabiee, Navid</au><au>Anjani, Qonita Kurnia</au><au>Maleki, Aziz</au><au>Zare, Ehsan Nazarzadeh</au><au>Sabri, Akmal Hidayat Bin</au><au>De Pasquale, Daniele</au><au>Koskinopoulou, Maria</au><au>Sharifi, Esmaeel</au><au>Sartorius, Rossella</au><au>Seyedhamzeh, Mohammad</au><au>Bochani, Shayesteh</au><au>Hirata, Ikue</au><au>Paiva‐Santos, Ana Cláudia</au><au>Mattos, Leonardo S.</au><au>Donnelly, Ryan F.</au><au>Mattoli, Virgilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>18</issue><spage>e2210034</spage><epage>n/a</epage><pages>e2210034-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof‐of‐concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water‐rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near‐infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns. Tissue models based on hydrogel/silicone are prepared for different applications in biomedical sectors. Such customized tissue surrogates can be employed as a platform to evaluate the ability of microneedle insertion, the diffusion of drugs, the activity of photothermal agents, as well as the performance of ultrasound bioimaging.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36739591</pmid><doi>10.1002/adma.202210034</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6945-8541</orcidid><orcidid>https://orcid.org/0000-0003-2456-0961</orcidid><orcidid>https://orcid.org/0000-0002-0766-4147</orcidid><orcidid>https://orcid.org/0000-0002-4809-550X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-05, Vol.35 (18), p.e2210034-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2773122909
source MEDLINE; Wiley Online Library All Journals
subjects Animals
Aqueous solutions
Artificial tissues
Biomechanics
Biomedical materials
Diffusion layers
drug delivery models
drug deposition
drug release profiles
Epidermis
Evaluation
Hydrophobicity
In vivo methods and tests
Infrared lasers
Laser beam heating
Materials science
Medical imaging
Mice
microneedle patch penetration
Needles
photothermal activity
Regulatory agencies
Silicones - chemistry
Skin - diagnostic imaging
skin model
tissue models
Ultrasonic imaging
Ultrasonography - methods
title Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20and%20Development%20of%20a%20Tissue%20Model%20for%20the%20Evaluation%20of%20Microneedle%20Penetration%20Ability,%20Drug%20Diffusion,%20Photothermal%20Activity,%20and%20Ultrasound%20Imaging:%20A%20Promising%20Surrogate%20to%20Ex%20Vivo%20and%20In%20Vivo%20Tissues&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Makvandi,%20Pooyan&rft.date=2023-05-01&rft.volume=35&rft.issue=18&rft.spage=e2210034&rft.epage=n/a&rft.pages=e2210034-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202210034&rft_dat=%3Cproquest_cross%3E2773122909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809010296&rft_id=info:pmid/36739591&rfr_iscdi=true