Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues
Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity propert...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-05, Vol.35 (18), p.e2210034-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e2210034 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Makvandi, Pooyan Shabani, Majid Rabiee, Navid Anjani, Qonita Kurnia Maleki, Aziz Zare, Ehsan Nazarzadeh Sabri, Akmal Hidayat Bin De Pasquale, Daniele Koskinopoulou, Maria Sharifi, Esmaeel Sartorius, Rossella Seyedhamzeh, Mohammad Bochani, Shayesteh Hirata, Ikue Paiva‐Santos, Ana Cláudia Mattos, Leonardo S. Donnelly, Ryan F. Mattoli, Virgilio |
description | Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof‐of‐concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water‐rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near‐infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.
Tissue models based on hydrogel/silicone are prepared for different applications in biomedical sectors. Such customized tissue surrogates can be employed as a platform to evaluate the ability of microneedle insertion, the diffusion of drugs, the activity of photothermal agents, as well as the performance of ultrasound bioimaging. |
doi_str_mv | 10.1002/adma.202210034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2773122909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773122909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-c2cdabd1fac9b08c44124e749edd8295b68d3e82fa25b8f781af5e434b57f3613</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EotuFK0dkiQuHZrEd54-5Rd0FVuqKlWi5Rk4yTl058WInC_tN-3FwmlIkLpw8Hv_mzZMfQm8oWVFC2AfZdHLFCGPhFvNnaEETRiNORPIcLYiIk0ikPD9D597fEUJEStKX6CxOs1gkgi7Q_aZvdQ_gdN9i2Td4DUcw9tBBP2CrsMTX2vsR8M42YLCyDg-3gDdHaUY5aNtP0E7XzgaRxgDeQw-Dm5-KShs9nC7w2o0tXmulRh_6F3h_awcbdFwnDS7qQR8fsGn_jQnT3o6h3HYyeGs_4gLvne20nzx-G52zrRwADxZvfuHv-mgfBrf9XM9-_Sv0Qknj4fXjuUQ3nzbXl1-iq6-ft5fFVVRzGvOoZnUjq4YqWYuK5DXnlHHIuICmyZlIqjRvYsiZkiypcpXlVKoEeMyrJFNxSuMlej_rHpz9EfYOZTBagzGyBzv6kmVZTBkTIYslevcPemdH1wd3JcuJIJQwkQZqNVPhT713oMqD0510p5KScsq8nDIvnzIPA28fZceqg-YJ_xNyAMQM_NQGTv-RK4v1rvgr_htB0LuB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809010296</pqid></control><display><type>article</type><title>Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Makvandi, Pooyan ; Shabani, Majid ; Rabiee, Navid ; Anjani, Qonita Kurnia ; Maleki, Aziz ; Zare, Ehsan Nazarzadeh ; Sabri, Akmal Hidayat Bin ; De Pasquale, Daniele ; Koskinopoulou, Maria ; Sharifi, Esmaeel ; Sartorius, Rossella ; Seyedhamzeh, Mohammad ; Bochani, Shayesteh ; Hirata, Ikue ; Paiva‐Santos, Ana Cláudia ; Mattos, Leonardo S. ; Donnelly, Ryan F. ; Mattoli, Virgilio</creator><creatorcontrib>Makvandi, Pooyan ; Shabani, Majid ; Rabiee, Navid ; Anjani, Qonita Kurnia ; Maleki, Aziz ; Zare, Ehsan Nazarzadeh ; Sabri, Akmal Hidayat Bin ; De Pasquale, Daniele ; Koskinopoulou, Maria ; Sharifi, Esmaeel ; Sartorius, Rossella ; Seyedhamzeh, Mohammad ; Bochani, Shayesteh ; Hirata, Ikue ; Paiva‐Santos, Ana Cláudia ; Mattos, Leonardo S. ; Donnelly, Ryan F. ; Mattoli, Virgilio</creatorcontrib><description>Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof‐of‐concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water‐rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near‐infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.
Tissue models based on hydrogel/silicone are prepared for different applications in biomedical sectors. Such customized tissue surrogates can be employed as a platform to evaluate the ability of microneedle insertion, the diffusion of drugs, the activity of photothermal agents, as well as the performance of ultrasound bioimaging.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202210034</identifier><identifier>PMID: 36739591</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Aqueous solutions ; Artificial tissues ; Biomechanics ; Biomedical materials ; Diffusion layers ; drug delivery models ; drug deposition ; drug release profiles ; Epidermis ; Evaluation ; Hydrophobicity ; In vivo methods and tests ; Infrared lasers ; Laser beam heating ; Materials science ; Medical imaging ; Mice ; microneedle patch penetration ; Needles ; photothermal activity ; Regulatory agencies ; Silicones - chemistry ; Skin - diagnostic imaging ; skin model ; tissue models ; Ultrasonic imaging ; Ultrasonography - methods</subject><ispartof>Advanced materials (Weinheim), 2023-05, Vol.35 (18), p.e2210034-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-c2cdabd1fac9b08c44124e749edd8295b68d3e82fa25b8f781af5e434b57f3613</citedby><cites>FETCH-LOGICAL-c4134-c2cdabd1fac9b08c44124e749edd8295b68d3e82fa25b8f781af5e434b57f3613</cites><orcidid>0000-0002-6945-8541 ; 0000-0003-2456-0961 ; 0000-0002-0766-4147 ; 0000-0002-4809-550X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202210034$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202210034$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36739591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makvandi, Pooyan</creatorcontrib><creatorcontrib>Shabani, Majid</creatorcontrib><creatorcontrib>Rabiee, Navid</creatorcontrib><creatorcontrib>Anjani, Qonita Kurnia</creatorcontrib><creatorcontrib>Maleki, Aziz</creatorcontrib><creatorcontrib>Zare, Ehsan Nazarzadeh</creatorcontrib><creatorcontrib>Sabri, Akmal Hidayat Bin</creatorcontrib><creatorcontrib>De Pasquale, Daniele</creatorcontrib><creatorcontrib>Koskinopoulou, Maria</creatorcontrib><creatorcontrib>Sharifi, Esmaeel</creatorcontrib><creatorcontrib>Sartorius, Rossella</creatorcontrib><creatorcontrib>Seyedhamzeh, Mohammad</creatorcontrib><creatorcontrib>Bochani, Shayesteh</creatorcontrib><creatorcontrib>Hirata, Ikue</creatorcontrib><creatorcontrib>Paiva‐Santos, Ana Cláudia</creatorcontrib><creatorcontrib>Mattos, Leonardo S.</creatorcontrib><creatorcontrib>Donnelly, Ryan F.</creatorcontrib><creatorcontrib>Mattoli, Virgilio</creatorcontrib><title>Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof‐of‐concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water‐rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near‐infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.
Tissue models based on hydrogel/silicone are prepared for different applications in biomedical sectors. Such customized tissue surrogates can be employed as a platform to evaluate the ability of microneedle insertion, the diffusion of drugs, the activity of photothermal agents, as well as the performance of ultrasound bioimaging.</description><subject>Animals</subject><subject>Aqueous solutions</subject><subject>Artificial tissues</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Diffusion layers</subject><subject>drug delivery models</subject><subject>drug deposition</subject><subject>drug release profiles</subject><subject>Epidermis</subject><subject>Evaluation</subject><subject>Hydrophobicity</subject><subject>In vivo methods and tests</subject><subject>Infrared lasers</subject><subject>Laser beam heating</subject><subject>Materials science</subject><subject>Medical imaging</subject><subject>Mice</subject><subject>microneedle patch penetration</subject><subject>Needles</subject><subject>photothermal activity</subject><subject>Regulatory agencies</subject><subject>Silicones - chemistry</subject><subject>Skin - diagnostic imaging</subject><subject>skin model</subject><subject>tissue models</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EotuFK0dkiQuHZrEd54-5Rd0FVuqKlWi5Rk4yTl058WInC_tN-3FwmlIkLpw8Hv_mzZMfQm8oWVFC2AfZdHLFCGPhFvNnaEETRiNORPIcLYiIk0ikPD9D597fEUJEStKX6CxOs1gkgi7Q_aZvdQ_gdN9i2Td4DUcw9tBBP2CrsMTX2vsR8M42YLCyDg-3gDdHaUY5aNtP0E7XzgaRxgDeQw-Dm5-KShs9nC7w2o0tXmulRh_6F3h_awcbdFwnDS7qQR8fsGn_jQnT3o6h3HYyeGs_4gLvne20nzx-G52zrRwADxZvfuHv-mgfBrf9XM9-_Sv0Qknj4fXjuUQ3nzbXl1-iq6-ft5fFVVRzGvOoZnUjq4YqWYuK5DXnlHHIuICmyZlIqjRvYsiZkiypcpXlVKoEeMyrJFNxSuMlej_rHpz9EfYOZTBagzGyBzv6kmVZTBkTIYslevcPemdH1wd3JcuJIJQwkQZqNVPhT713oMqD0510p5KScsq8nDIvnzIPA28fZceqg-YJ_xNyAMQM_NQGTv-RK4v1rvgr_htB0LuB</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Makvandi, Pooyan</creator><creator>Shabani, Majid</creator><creator>Rabiee, Navid</creator><creator>Anjani, Qonita Kurnia</creator><creator>Maleki, Aziz</creator><creator>Zare, Ehsan Nazarzadeh</creator><creator>Sabri, Akmal Hidayat Bin</creator><creator>De Pasquale, Daniele</creator><creator>Koskinopoulou, Maria</creator><creator>Sharifi, Esmaeel</creator><creator>Sartorius, Rossella</creator><creator>Seyedhamzeh, Mohammad</creator><creator>Bochani, Shayesteh</creator><creator>Hirata, Ikue</creator><creator>Paiva‐Santos, Ana Cláudia</creator><creator>Mattos, Leonardo S.</creator><creator>Donnelly, Ryan F.</creator><creator>Mattoli, Virgilio</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6945-8541</orcidid><orcidid>https://orcid.org/0000-0003-2456-0961</orcidid><orcidid>https://orcid.org/0000-0002-0766-4147</orcidid><orcidid>https://orcid.org/0000-0002-4809-550X</orcidid></search><sort><creationdate>20230501</creationdate><title>Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues</title><author>Makvandi, Pooyan ; Shabani, Majid ; Rabiee, Navid ; Anjani, Qonita Kurnia ; Maleki, Aziz ; Zare, Ehsan Nazarzadeh ; Sabri, Akmal Hidayat Bin ; De Pasquale, Daniele ; Koskinopoulou, Maria ; Sharifi, Esmaeel ; Sartorius, Rossella ; Seyedhamzeh, Mohammad ; Bochani, Shayesteh ; Hirata, Ikue ; Paiva‐Santos, Ana Cláudia ; Mattos, Leonardo S. ; Donnelly, Ryan F. ; Mattoli, Virgilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-c2cdabd1fac9b08c44124e749edd8295b68d3e82fa25b8f781af5e434b57f3613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Aqueous solutions</topic><topic>Artificial tissues</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Diffusion layers</topic><topic>drug delivery models</topic><topic>drug deposition</topic><topic>drug release profiles</topic><topic>Epidermis</topic><topic>Evaluation</topic><topic>Hydrophobicity</topic><topic>In vivo methods and tests</topic><topic>Infrared lasers</topic><topic>Laser beam heating</topic><topic>Materials science</topic><topic>Medical imaging</topic><topic>Mice</topic><topic>microneedle patch penetration</topic><topic>Needles</topic><topic>photothermal activity</topic><topic>Regulatory agencies</topic><topic>Silicones - chemistry</topic><topic>Skin - diagnostic imaging</topic><topic>skin model</topic><topic>tissue models</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makvandi, Pooyan</creatorcontrib><creatorcontrib>Shabani, Majid</creatorcontrib><creatorcontrib>Rabiee, Navid</creatorcontrib><creatorcontrib>Anjani, Qonita Kurnia</creatorcontrib><creatorcontrib>Maleki, Aziz</creatorcontrib><creatorcontrib>Zare, Ehsan Nazarzadeh</creatorcontrib><creatorcontrib>Sabri, Akmal Hidayat Bin</creatorcontrib><creatorcontrib>De Pasquale, Daniele</creatorcontrib><creatorcontrib>Koskinopoulou, Maria</creatorcontrib><creatorcontrib>Sharifi, Esmaeel</creatorcontrib><creatorcontrib>Sartorius, Rossella</creatorcontrib><creatorcontrib>Seyedhamzeh, Mohammad</creatorcontrib><creatorcontrib>Bochani, Shayesteh</creatorcontrib><creatorcontrib>Hirata, Ikue</creatorcontrib><creatorcontrib>Paiva‐Santos, Ana Cláudia</creatorcontrib><creatorcontrib>Mattos, Leonardo S.</creatorcontrib><creatorcontrib>Donnelly, Ryan F.</creatorcontrib><creatorcontrib>Mattoli, Virgilio</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makvandi, Pooyan</au><au>Shabani, Majid</au><au>Rabiee, Navid</au><au>Anjani, Qonita Kurnia</au><au>Maleki, Aziz</au><au>Zare, Ehsan Nazarzadeh</au><au>Sabri, Akmal Hidayat Bin</au><au>De Pasquale, Daniele</au><au>Koskinopoulou, Maria</au><au>Sharifi, Esmaeel</au><au>Sartorius, Rossella</au><au>Seyedhamzeh, Mohammad</au><au>Bochani, Shayesteh</au><au>Hirata, Ikue</au><au>Paiva‐Santos, Ana Cláudia</au><au>Mattos, Leonardo S.</au><au>Donnelly, Ryan F.</au><au>Mattoli, Virgilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>18</issue><spage>e2210034</spage><epage>n/a</epage><pages>e2210034-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Driven by regulatory authorities and the ever‐growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof‐of‐concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water‐rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near‐infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.
Tissue models based on hydrogel/silicone are prepared for different applications in biomedical sectors. Such customized tissue surrogates can be employed as a platform to evaluate the ability of microneedle insertion, the diffusion of drugs, the activity of photothermal agents, as well as the performance of ultrasound bioimaging.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36739591</pmid><doi>10.1002/adma.202210034</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6945-8541</orcidid><orcidid>https://orcid.org/0000-0003-2456-0961</orcidid><orcidid>https://orcid.org/0000-0002-0766-4147</orcidid><orcidid>https://orcid.org/0000-0002-4809-550X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-05, Vol.35 (18), p.e2210034-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2773122909 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals Aqueous solutions Artificial tissues Biomechanics Biomedical materials Diffusion layers drug delivery models drug deposition drug release profiles Epidermis Evaluation Hydrophobicity In vivo methods and tests Infrared lasers Laser beam heating Materials science Medical imaging Mice microneedle patch penetration Needles photothermal activity Regulatory agencies Silicones - chemistry Skin - diagnostic imaging skin model tissue models Ultrasonic imaging Ultrasonography - methods |
title | Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20and%20Development%20of%20a%20Tissue%20Model%20for%20the%20Evaluation%20of%20Microneedle%20Penetration%20Ability,%20Drug%20Diffusion,%20Photothermal%20Activity,%20and%20Ultrasound%20Imaging:%20A%20Promising%20Surrogate%20to%20Ex%20Vivo%20and%20In%20Vivo%20Tissues&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Makvandi,%20Pooyan&rft.date=2023-05-01&rft.volume=35&rft.issue=18&rft.spage=e2210034&rft.epage=n/a&rft.pages=e2210034-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202210034&rft_dat=%3Cproquest_cross%3E2773122909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809010296&rft_id=info:pmid/36739591&rfr_iscdi=true |