Detection of Intracranial Aneurysms Using Multiphase CT Angiography with a Deep Learning Model

Determine the effect of a multiphase fusion deep-learning model with automatic phase selection in detection of intracranial aneurysm (IA) from computed tomography angiography (CTA) images. CTA images of intracranial arteries from patients at Ningbo First Hospital were retrospectively analyzed. Image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2023-11, Vol.30 (11), p.2477-2486
Hauptverfasser: Wang, Jinglu, Sun, Jie, Xu, Jingxu, Lu, Shiyu, Wang, Hao, Huang, Chencui, Zhang, Fandong, Yu, Yizhou, Gao, Xiang, Wang, Ming, Wang, Yu, Ruan, Xinzhong, Pan, Yuning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2486
container_issue 11
container_start_page 2477
container_title Academic radiology
container_volume 30
creator Wang, Jinglu
Sun, Jie
Xu, Jingxu
Lu, Shiyu
Wang, Hao
Huang, Chencui
Zhang, Fandong
Yu, Yizhou
Gao, Xiang
Wang, Ming
Wang, Yu
Ruan, Xinzhong
Pan, Yuning
description Determine the effect of a multiphase fusion deep-learning model with automatic phase selection in detection of intracranial aneurysm (IA) from computed tomography angiography (CTA) images. CTA images of intracranial arteries from patients at Ningbo First Hospital were retrospectively analyzed. Images were randomly classified as training data, internal validation data, or test data. CTA images from cases examined by digital subtraction angiography (DSA) were examined for independent validation. A deep-learning model was constructed by automatic phase selection of multiphase fusion, and compared to the single-phase algorithm to evaluate algorithm sensitivity. We analyzed 1110 patients (1493 aneurysms) as training data, 139 patients (174 aneurysms) as internal validation data, and 134 patients (175 aneurysms) as test data. The sensitivity of the multiphase analysis of the internal validation data, test data, and independent validation data were greater than from the single-phase analysis. The recall of the multiphase selection was greater or equal to that of single-phase selection in the aneurysm position, shape, size, and rupture status. Use of the test data to determine the presence and absence of aneurysm rupture led to a recall from multiphase selection of 94.8% and 87.6% respectively; both of these values were greater than those from single-phase selection (89.6% and 79.4%). A multiphase fusion deep learning model with automatic phase selection provided automated detection of IAs with high sensitivity.
doi_str_mv 10.1016/j.acra.2022.12.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2773114951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1076633222006997</els_id><sourcerecordid>2773114951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6df7db79a67440336b319489bd7030539e7110efaffab5684ec36aa5077c87343</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qFd9_oIfKx14SbI9jJxIXtBSKtKgXuGI5zmTXq2wS7IRq_z1elvbIaUaa532leQj5zlnOGVeXm9y6YHPBhMi5yJmEL-SEl7rMJJPqa9qZVpkCEMfkNMYNY7xQJRyRY1AatNBwQp5vcEI3-aGnQ0vv-ynsO3tvO3rd4xx2cRvpU_T9ij7M3eTHtY1IF4_puvLDKthxvaN__bSmlt4gjnSJNvTv-NBgd06-tbaLePExz8jT7a_Hxe9s-efufnG9zBwUaspU0-qm1pVVWkoGoGrglSyrutEMWAEVas4ZtrZtbZ1-kOhAWVswrV2pQcIZ-XnoHcPwMmOczNZHh11nexzmaITWwLmsCp5QcUBdGGIM2Jox-K0NO8OZ2Xs1G7N3YPZeDRcmeU2hHx_9c73F5n_kn8gEXB0ATF--egwmOo-9w8aH5Nc0g_-s_w3Sc4iM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773114951</pqid></control><display><type>article</type><title>Detection of Intracranial Aneurysms Using Multiphase CT Angiography with a Deep Learning Model</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Jinglu ; Sun, Jie ; Xu, Jingxu ; Lu, Shiyu ; Wang, Hao ; Huang, Chencui ; Zhang, Fandong ; Yu, Yizhou ; Gao, Xiang ; Wang, Ming ; Wang, Yu ; Ruan, Xinzhong ; Pan, Yuning</creator><creatorcontrib>Wang, Jinglu ; Sun, Jie ; Xu, Jingxu ; Lu, Shiyu ; Wang, Hao ; Huang, Chencui ; Zhang, Fandong ; Yu, Yizhou ; Gao, Xiang ; Wang, Ming ; Wang, Yu ; Ruan, Xinzhong ; Pan, Yuning</creatorcontrib><description>Determine the effect of a multiphase fusion deep-learning model with automatic phase selection in detection of intracranial aneurysm (IA) from computed tomography angiography (CTA) images. CTA images of intracranial arteries from patients at Ningbo First Hospital were retrospectively analyzed. Images were randomly classified as training data, internal validation data, or test data. CTA images from cases examined by digital subtraction angiography (DSA) were examined for independent validation. A deep-learning model was constructed by automatic phase selection of multiphase fusion, and compared to the single-phase algorithm to evaluate algorithm sensitivity. We analyzed 1110 patients (1493 aneurysms) as training data, 139 patients (174 aneurysms) as internal validation data, and 134 patients (175 aneurysms) as test data. The sensitivity of the multiphase analysis of the internal validation data, test data, and independent validation data were greater than from the single-phase analysis. The recall of the multiphase selection was greater or equal to that of single-phase selection in the aneurysm position, shape, size, and rupture status. Use of the test data to determine the presence and absence of aneurysm rupture led to a recall from multiphase selection of 94.8% and 87.6% respectively; both of these values were greater than those from single-phase selection (89.6% and 79.4%). A multiphase fusion deep learning model with automatic phase selection provided automated detection of IAs with high sensitivity.</description><identifier>ISSN: 1076-6332</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2022.12.043</identifier><identifier>PMID: 36737273</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>4D-CTA ; Convolutional neural networks ; Deep learning ; Intracranial aneurysm</subject><ispartof>Academic radiology, 2023-11, Vol.30 (11), p.2477-2486</ispartof><rights>2023 The Association of University Radiologists</rights><rights>Copyright © 2023 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6df7db79a67440336b319489bd7030539e7110efaffab5684ec36aa5077c87343</citedby><cites>FETCH-LOGICAL-c356t-6df7db79a67440336b319489bd7030539e7110efaffab5684ec36aa5077c87343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1076633222006997$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36737273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jinglu</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Xu, Jingxu</creatorcontrib><creatorcontrib>Lu, Shiyu</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Huang, Chencui</creatorcontrib><creatorcontrib>Zhang, Fandong</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Ruan, Xinzhong</creatorcontrib><creatorcontrib>Pan, Yuning</creatorcontrib><title>Detection of Intracranial Aneurysms Using Multiphase CT Angiography with a Deep Learning Model</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>Determine the effect of a multiphase fusion deep-learning model with automatic phase selection in detection of intracranial aneurysm (IA) from computed tomography angiography (CTA) images. CTA images of intracranial arteries from patients at Ningbo First Hospital were retrospectively analyzed. Images were randomly classified as training data, internal validation data, or test data. CTA images from cases examined by digital subtraction angiography (DSA) were examined for independent validation. A deep-learning model was constructed by automatic phase selection of multiphase fusion, and compared to the single-phase algorithm to evaluate algorithm sensitivity. We analyzed 1110 patients (1493 aneurysms) as training data, 139 patients (174 aneurysms) as internal validation data, and 134 patients (175 aneurysms) as test data. The sensitivity of the multiphase analysis of the internal validation data, test data, and independent validation data were greater than from the single-phase analysis. The recall of the multiphase selection was greater or equal to that of single-phase selection in the aneurysm position, shape, size, and rupture status. Use of the test data to determine the presence and absence of aneurysm rupture led to a recall from multiphase selection of 94.8% and 87.6% respectively; both of these values were greater than those from single-phase selection (89.6% and 79.4%). A multiphase fusion deep learning model with automatic phase selection provided automated detection of IAs with high sensitivity.</description><subject>4D-CTA</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Intracranial aneurysm</subject><issn>1076-6332</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq2qFd9_oIfKx14SbI9jJxIXtBSKtKgXuGI5zmTXq2wS7IRq_z1elvbIaUaa532leQj5zlnOGVeXm9y6YHPBhMi5yJmEL-SEl7rMJJPqa9qZVpkCEMfkNMYNY7xQJRyRY1AatNBwQp5vcEI3-aGnQ0vv-ynsO3tvO3rd4xx2cRvpU_T9ij7M3eTHtY1IF4_puvLDKthxvaN__bSmlt4gjnSJNvTv-NBgd06-tbaLePExz8jT7a_Hxe9s-efufnG9zBwUaspU0-qm1pVVWkoGoGrglSyrutEMWAEVas4ZtrZtbZ1-kOhAWVswrV2pQcIZ-XnoHcPwMmOczNZHh11nexzmaITWwLmsCp5QcUBdGGIM2Jox-K0NO8OZ2Xs1G7N3YPZeDRcmeU2hHx_9c73F5n_kn8gEXB0ATF--egwmOo-9w8aH5Nc0g_-s_w3Sc4iM</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Wang, Jinglu</creator><creator>Sun, Jie</creator><creator>Xu, Jingxu</creator><creator>Lu, Shiyu</creator><creator>Wang, Hao</creator><creator>Huang, Chencui</creator><creator>Zhang, Fandong</creator><creator>Yu, Yizhou</creator><creator>Gao, Xiang</creator><creator>Wang, Ming</creator><creator>Wang, Yu</creator><creator>Ruan, Xinzhong</creator><creator>Pan, Yuning</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231101</creationdate><title>Detection of Intracranial Aneurysms Using Multiphase CT Angiography with a Deep Learning Model</title><author>Wang, Jinglu ; Sun, Jie ; Xu, Jingxu ; Lu, Shiyu ; Wang, Hao ; Huang, Chencui ; Zhang, Fandong ; Yu, Yizhou ; Gao, Xiang ; Wang, Ming ; Wang, Yu ; Ruan, Xinzhong ; Pan, Yuning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6df7db79a67440336b319489bd7030539e7110efaffab5684ec36aa5077c87343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4D-CTA</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Intracranial aneurysm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinglu</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Xu, Jingxu</creatorcontrib><creatorcontrib>Lu, Shiyu</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Huang, Chencui</creatorcontrib><creatorcontrib>Zhang, Fandong</creatorcontrib><creatorcontrib>Yu, Yizhou</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Ruan, Xinzhong</creatorcontrib><creatorcontrib>Pan, Yuning</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinglu</au><au>Sun, Jie</au><au>Xu, Jingxu</au><au>Lu, Shiyu</au><au>Wang, Hao</au><au>Huang, Chencui</au><au>Zhang, Fandong</au><au>Yu, Yizhou</au><au>Gao, Xiang</au><au>Wang, Ming</au><au>Wang, Yu</au><au>Ruan, Xinzhong</au><au>Pan, Yuning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Intracranial Aneurysms Using Multiphase CT Angiography with a Deep Learning Model</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>30</volume><issue>11</issue><spage>2477</spage><epage>2486</epage><pages>2477-2486</pages><issn>1076-6332</issn><eissn>1878-4046</eissn><abstract>Determine the effect of a multiphase fusion deep-learning model with automatic phase selection in detection of intracranial aneurysm (IA) from computed tomography angiography (CTA) images. CTA images of intracranial arteries from patients at Ningbo First Hospital were retrospectively analyzed. Images were randomly classified as training data, internal validation data, or test data. CTA images from cases examined by digital subtraction angiography (DSA) were examined for independent validation. A deep-learning model was constructed by automatic phase selection of multiphase fusion, and compared to the single-phase algorithm to evaluate algorithm sensitivity. We analyzed 1110 patients (1493 aneurysms) as training data, 139 patients (174 aneurysms) as internal validation data, and 134 patients (175 aneurysms) as test data. The sensitivity of the multiphase analysis of the internal validation data, test data, and independent validation data were greater than from the single-phase analysis. The recall of the multiphase selection was greater or equal to that of single-phase selection in the aneurysm position, shape, size, and rupture status. Use of the test data to determine the presence and absence of aneurysm rupture led to a recall from multiphase selection of 94.8% and 87.6% respectively; both of these values were greater than those from single-phase selection (89.6% and 79.4%). A multiphase fusion deep learning model with automatic phase selection provided automated detection of IAs with high sensitivity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36737273</pmid><doi>10.1016/j.acra.2022.12.043</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1076-6332
ispartof Academic radiology, 2023-11, Vol.30 (11), p.2477-2486
issn 1076-6332
1878-4046
language eng
recordid cdi_proquest_miscellaneous_2773114951
source Elsevier ScienceDirect Journals
subjects 4D-CTA
Convolutional neural networks
Deep learning
Intracranial aneurysm
title Detection of Intracranial Aneurysms Using Multiphase CT Angiography with a Deep Learning Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Intracranial%20Aneurysms%20Using%20Multiphase%20CT%20Angiography%20with%20a%20Deep%20Learning%20Model&rft.jtitle=Academic%20radiology&rft.au=Wang,%20Jinglu&rft.date=2023-11-01&rft.volume=30&rft.issue=11&rft.spage=2477&rft.epage=2486&rft.pages=2477-2486&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2022.12.043&rft_dat=%3Cproquest_cross%3E2773114951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773114951&rft_id=info:pmid/36737273&rft_els_id=S1076633222006997&rfr_iscdi=true