Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction
The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N 2 adsorption and activation is essential for nitrogen fixation. Herein, we intro...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-02, Vol.15 (8), p.471-479 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 8 |
container_start_page | 471 |
container_title | Nanoscale |
container_volume | 15 |
creator | Li, Heen Xu, Xiaoyue Lin, Xiaohu Chen, Jianmin Zhu, Kunling Peng, Fei Gao, Faming |
description | The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N
2
adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO
3
by pyrolysis at 450 °C (450-NiMnO
3
) to achieve remarkable NRR activity. The NiMnO
3
3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N
2
adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO
3
, 450-NiMnO
3
showed excellent performance for nitrogen reduction to ammonia with a high NH
3
yield of 31.44 μg h
−1
mg
cat
−1
(at −0.3 V
vs.
RHE) and a splendid FE of 14.5% (at −0.1 V
vs.
RHE) in 0.1 M KOH. 450-NiMnO
3
also shows high long-term electrochemical stability with excellent selectivity for NH
3
formation.
15
N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO
3
. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.
In this work, oxygen vacancy abundant NiMnO
3
achieves a superior NH
3
yield of 31.44 μg h
−1
mg
cat
−1
at −0.3 V
vs.
RHE and a faradaic efficiency of 14.5% at −0.1 V
vs.
RHE. |
doi_str_mv | 10.1039/d2nr06195c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2773114396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779140380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7869fa00c81f4768741179da2e89ed16d57603388c8afb1ae88a4c5732e9589e3</originalsourceid><addsrcrecordid>eNpd0VtLBCEUB3CJosvWS--F0EsEUzq6Xh5ju0IURD0PrnOmjBnddCbab5_b1gY9qZyffw8ehPYpOaWE6bO69JEIqsd2DW2XhJOCMVmur_aCb6GdlN4IEZoJtom2mJCMM8m3UXfr-xjqwTr_gsPn_AU8_jDWeOsgYeexwVNXdNCbNpddDdgbH9LsFSLgJkQ8i6EL_eI2tGBzljXZzntnsXf5uAiMkB_oXfC7aKMxbYK9n3WEnq8unyY3xd3D9e3k_K6wufO-kEroxhBiFW24FEpySqWuTQlKQ01FPZaCMKaUVaaZUgNKGW7HkpWgx5mwETpe5ubu3gdIfdW5ZKFtjYcwpKqUklHKmRaZHv2jb2GIPne3UJpywhTJ6mSpbAwpRWiqWXSdifOKkmoxhOqivH_8HsIk48OfyGHaQb2iv7-ewcESxGRX1b8psi-K1Iyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779140380</pqid></control><display><type>article</type><title>Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Heen ; Xu, Xiaoyue ; Lin, Xiaohu ; Chen, Jianmin ; Zhu, Kunling ; Peng, Fei ; Gao, Faming</creator><creatorcontrib>Li, Heen ; Xu, Xiaoyue ; Lin, Xiaohu ; Chen, Jianmin ; Zhu, Kunling ; Peng, Fei ; Gao, Faming</creatorcontrib><description>The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N
2
adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO
3
by pyrolysis at 450 °C (450-NiMnO
3
) to achieve remarkable NRR activity. The NiMnO
3
3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N
2
adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO
3
, 450-NiMnO
3
showed excellent performance for nitrogen reduction to ammonia with a high NH
3
yield of 31.44 μg h
−1
mg
cat
−1
(at −0.3 V
vs.
RHE) and a splendid FE of 14.5% (at −0.1 V
vs.
RHE) in 0.1 M KOH. 450-NiMnO
3
also shows high long-term electrochemical stability with excellent selectivity for NH
3
formation.
15
N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO
3
. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.
In this work, oxygen vacancy abundant NiMnO
3
achieves a superior NH
3
yield of 31.44 μg h
−1
mg
cat
−1
at −0.3 V
vs.
RHE and a faradaic efficiency of 14.5% at −0.1 V
vs.
RHE.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr06195c</identifier><identifier>PMID: 36734374</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Ammonia ; Bimetals ; Chemical reduction ; Electrocatalysts ; Hydrogen evolution reactions ; Metal oxides ; Nanospheres ; Nitrogen ; Nitrogenation ; Oxygen ; Pyrolysis ; Selectivity ; Surface chemistry</subject><ispartof>Nanoscale, 2023-02, Vol.15 (8), p.471-479</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7869fa00c81f4768741179da2e89ed16d57603388c8afb1ae88a4c5732e9589e3</citedby><cites>FETCH-LOGICAL-c337t-7869fa00c81f4768741179da2e89ed16d57603388c8afb1ae88a4c5732e9589e3</cites><orcidid>0000-0001-8711-7153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36734374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Heen</creatorcontrib><creatorcontrib>Xu, Xiaoyue</creatorcontrib><creatorcontrib>Lin, Xiaohu</creatorcontrib><creatorcontrib>Chen, Jianmin</creatorcontrib><creatorcontrib>Zhu, Kunling</creatorcontrib><creatorcontrib>Peng, Fei</creatorcontrib><creatorcontrib>Gao, Faming</creatorcontrib><title>Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N
2
adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO
3
by pyrolysis at 450 °C (450-NiMnO
3
) to achieve remarkable NRR activity. The NiMnO
3
3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N
2
adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO
3
, 450-NiMnO
3
showed excellent performance for nitrogen reduction to ammonia with a high NH
3
yield of 31.44 μg h
−1
mg
cat
−1
(at −0.3 V
vs.
RHE) and a splendid FE of 14.5% (at −0.1 V
vs.
RHE) in 0.1 M KOH. 450-NiMnO
3
also shows high long-term electrochemical stability with excellent selectivity for NH
3
formation.
15
N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO
3
. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.
In this work, oxygen vacancy abundant NiMnO
3
achieves a superior NH
3
yield of 31.44 μg h
−1
mg
cat
−1
at −0.3 V
vs.
RHE and a faradaic efficiency of 14.5% at −0.1 V
vs.
RHE.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Bimetals</subject><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Hydrogen evolution reactions</subject><subject>Metal oxides</subject><subject>Nanospheres</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Oxygen</subject><subject>Pyrolysis</subject><subject>Selectivity</subject><subject>Surface chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0VtLBCEUB3CJosvWS--F0EsEUzq6Xh5ju0IURD0PrnOmjBnddCbab5_b1gY9qZyffw8ehPYpOaWE6bO69JEIqsd2DW2XhJOCMVmur_aCb6GdlN4IEZoJtom2mJCMM8m3UXfr-xjqwTr_gsPn_AU8_jDWeOsgYeexwVNXdNCbNpddDdgbH9LsFSLgJkQ8i6EL_eI2tGBzljXZzntnsXf5uAiMkB_oXfC7aKMxbYK9n3WEnq8unyY3xd3D9e3k_K6wufO-kEroxhBiFW24FEpySqWuTQlKQ01FPZaCMKaUVaaZUgNKGW7HkpWgx5mwETpe5ubu3gdIfdW5ZKFtjYcwpKqUklHKmRaZHv2jb2GIPne3UJpywhTJ6mSpbAwpRWiqWXSdifOKkmoxhOqivH_8HsIk48OfyGHaQb2iv7-ewcESxGRX1b8psi-K1Iyg</recordid><startdate>20230223</startdate><enddate>20230223</enddate><creator>Li, Heen</creator><creator>Xu, Xiaoyue</creator><creator>Lin, Xiaohu</creator><creator>Chen, Jianmin</creator><creator>Zhu, Kunling</creator><creator>Peng, Fei</creator><creator>Gao, Faming</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8711-7153</orcidid></search><sort><creationdate>20230223</creationdate><title>Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction</title><author>Li, Heen ; Xu, Xiaoyue ; Lin, Xiaohu ; Chen, Jianmin ; Zhu, Kunling ; Peng, Fei ; Gao, Faming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7869fa00c81f4768741179da2e89ed16d57603388c8afb1ae88a4c5732e9589e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Bimetals</topic><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Hydrogen evolution reactions</topic><topic>Metal oxides</topic><topic>Nanospheres</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Oxygen</topic><topic>Pyrolysis</topic><topic>Selectivity</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Heen</creatorcontrib><creatorcontrib>Xu, Xiaoyue</creatorcontrib><creatorcontrib>Lin, Xiaohu</creatorcontrib><creatorcontrib>Chen, Jianmin</creatorcontrib><creatorcontrib>Zhu, Kunling</creatorcontrib><creatorcontrib>Peng, Fei</creatorcontrib><creatorcontrib>Gao, Faming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Heen</au><au>Xu, Xiaoyue</au><au>Lin, Xiaohu</au><au>Chen, Jianmin</au><au>Zhu, Kunling</au><au>Peng, Fei</au><au>Gao, Faming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-02-23</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>471</spage><epage>479</epage><pages>471-479</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N
2
adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO
3
by pyrolysis at 450 °C (450-NiMnO
3
) to achieve remarkable NRR activity. The NiMnO
3
3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N
2
adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO
3
, 450-NiMnO
3
showed excellent performance for nitrogen reduction to ammonia with a high NH
3
yield of 31.44 μg h
−1
mg
cat
−1
(at −0.3 V
vs.
RHE) and a splendid FE of 14.5% (at −0.1 V
vs.
RHE) in 0.1 M KOH. 450-NiMnO
3
also shows high long-term electrochemical stability with excellent selectivity for NH
3
formation.
15
N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO
3
. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.
In this work, oxygen vacancy abundant NiMnO
3
achieves a superior NH
3
yield of 31.44 μg h
−1
mg
cat
−1
at −0.3 V
vs.
RHE and a faradaic efficiency of 14.5% at −0.1 V
vs.
RHE.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36734374</pmid><doi>10.1039/d2nr06195c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8711-7153</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-02, Vol.15 (8), p.471-479 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2773114396 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Adsorption Ammonia Bimetals Chemical reduction Electrocatalysts Hydrogen evolution reactions Metal oxides Nanospheres Nitrogen Nitrogenation Oxygen Pyrolysis Selectivity Surface chemistry |
title | Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introducing%20oxygen%20vacancies%20in%20a%20bi-metal%20oxide%20nanosphere%20for%20promoting%20electrocatalytic%20nitrogen%20reduction&rft.jtitle=Nanoscale&rft.au=Li,%20Heen&rft.date=2023-02-23&rft.volume=15&rft.issue=8&rft.spage=471&rft.epage=479&rft.pages=471-479&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr06195c&rft_dat=%3Cproquest_pubme%3E2779140380%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779140380&rft_id=info:pmid/36734374&rfr_iscdi=true |