Electrophotocatalytic oxygenation of multiple adjacent C–H bonds
Oxygen-containing functional groups are nearly ubiquitous in complex small molecules. The installation of multiple C–O bonds by the concurrent oxygenation of contiguous C–H bonds in a selective fashion would be highly desirable but has largely been the purview of biosynthesis. Multiple, concurrent C...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2023-02, Vol.614 (7947), p.275-280 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 7947 |
container_start_page | 275 |
container_title | Nature (London) |
container_volume | 614 |
creator | Shen, Tao Li, Yi-Lun Ye, Ke-Yin Lambert, Tristan H. |
description | Oxygen-containing functional groups are nearly ubiquitous in complex small molecules. The installation of multiple C–O bonds by the concurrent oxygenation of contiguous C–H bonds in a selective fashion would be highly desirable but has largely been the purview of biosynthesis. Multiple, concurrent C–H bond oxygenation reactions by synthetic means presents a challenge
1
–
6
, particularly because of the risk of overoxidation. Here we report the selective oxygenation of two or three contiguous C–H bonds by dehydrogenation and oxygenation, enabling the conversion of simple alkylarenes or trifluoroacetamides to their corresponding di- or triacetoxylates. The method achieves such transformations by the repeated operation of a potent oxidative catalyst, but under conditions that are sufficiently selective to avoid destructive overoxidation. These reactions are achieved using electrophotocatalysis
7
, a process that harnesses the energy of both light and electricity to promote chemical reactions. Notably, the judicious choice of acid allows for the selective synthesis of either di- or trioxygenated products.
Installation of multiple C–O bonds by concurrent oxygenation of contiguous C–H bonds in a selective fashion is highly desirable, and this is achieved by repeated operation of a potent oxidative catalyst via electrophotocatalysis. |
doi_str_mv | 10.1038/s41586-022-05608-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771939697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771939697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-1951b88dcff9f498f797d1ac906bca6eedffae1b3a8cd038107c3a0a8f59f4833</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EoqXwAgwoEgtLwI4d_xmhKhQJiQVmy3HskiqJS-xI7cY78IY8CS4pIDEw3XDf_e7uA-AUwUsEMb_yBOWcpjDLUphTyNP1HhgjwmhKKGf7YAxhxlPIMR2BI--XEMIcMXIIRpgSholgY3Azq40OnVu9uOC0CqrehEonbr1ZmFaFyrWJs0nT16Fa1SZR5VJp04Zk-vH2Pk8K15b-GBxYVXtzsqsT8Hw7e5rO04fHu_vp9UOqCRIhRSJHBeeltlZYIrhlgpVIaQFpoRU1prRWGVRgxXUZ30OQaayg4jaPPMd4Ai6G3FXnXnvjg2wqr01dq9a43suMMSSwoIJF9PwPunR918brtlTOBBe5iFQ2ULpz3nfGylVXNarbSATl1rAcDMtoWH4Zlus4dLaL7ovGlD8j30ojgAfAx1a7MN3v7n9iPwEEi4iT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775798959</pqid></control><display><type>article</type><title>Electrophotocatalytic oxygenation of multiple adjacent C–H bonds</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Tao ; Li, Yi-Lun ; Ye, Ke-Yin ; Lambert, Tristan H.</creator><creatorcontrib>Shen, Tao ; Li, Yi-Lun ; Ye, Ke-Yin ; Lambert, Tristan H.</creatorcontrib><description>Oxygen-containing functional groups are nearly ubiquitous in complex small molecules. The installation of multiple C–O bonds by the concurrent oxygenation of contiguous C–H bonds in a selective fashion would be highly desirable but has largely been the purview of biosynthesis. Multiple, concurrent C–H bond oxygenation reactions by synthetic means presents a challenge
1
–
6
, particularly because of the risk of overoxidation. Here we report the selective oxygenation of two or three contiguous C–H bonds by dehydrogenation and oxygenation, enabling the conversion of simple alkylarenes or trifluoroacetamides to their corresponding di- or triacetoxylates. The method achieves such transformations by the repeated operation of a potent oxidative catalyst, but under conditions that are sufficiently selective to avoid destructive overoxidation. These reactions are achieved using electrophotocatalysis
7
, a process that harnesses the energy of both light and electricity to promote chemical reactions. Notably, the judicious choice of acid allows for the selective synthesis of either di- or trioxygenated products.
Installation of multiple C–O bonds by concurrent oxygenation of contiguous C–H bonds in a selective fashion is highly desirable, and this is achieved by repeated operation of a potent oxidative catalyst via electrophotocatalysis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05608-x</identifier><identifier>PMID: 36473497</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/161/886 ; 639/638/403/933 ; 639/638/439/890 ; 639/638/77/886 ; 639/638/77/890 ; Acids ; Biosynthesis ; Carbon ; Catalysts ; Chemical bonds ; Chemical reactions ; Dehydrogenation ; Functional groups ; Humanities and Social Sciences ; Hydrogen bonds ; multidisciplinary ; Oxidation ; Oxygen ; Oxygenation ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2023-02, Vol.614 (7947), p.275-280</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Feb 9, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-1951b88dcff9f498f797d1ac906bca6eedffae1b3a8cd038107c3a0a8f59f4833</citedby><cites>FETCH-LOGICAL-c419t-1951b88dcff9f498f797d1ac906bca6eedffae1b3a8cd038107c3a0a8f59f4833</cites><orcidid>0000-0003-3955-7079 ; 0000-0002-7720-3290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05608-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05608-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36473497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Li, Yi-Lun</creatorcontrib><creatorcontrib>Ye, Ke-Yin</creatorcontrib><creatorcontrib>Lambert, Tristan H.</creatorcontrib><title>Electrophotocatalytic oxygenation of multiple adjacent C–H bonds</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Oxygen-containing functional groups are nearly ubiquitous in complex small molecules. The installation of multiple C–O bonds by the concurrent oxygenation of contiguous C–H bonds in a selective fashion would be highly desirable but has largely been the purview of biosynthesis. Multiple, concurrent C–H bond oxygenation reactions by synthetic means presents a challenge
1
–
6
, particularly because of the risk of overoxidation. Here we report the selective oxygenation of two or three contiguous C–H bonds by dehydrogenation and oxygenation, enabling the conversion of simple alkylarenes or trifluoroacetamides to their corresponding di- or triacetoxylates. The method achieves such transformations by the repeated operation of a potent oxidative catalyst, but under conditions that are sufficiently selective to avoid destructive overoxidation. These reactions are achieved using electrophotocatalysis
7
, a process that harnesses the energy of both light and electricity to promote chemical reactions. Notably, the judicious choice of acid allows for the selective synthesis of either di- or trioxygenated products.
Installation of multiple C–O bonds by concurrent oxygenation of contiguous C–H bonds in a selective fashion is highly desirable, and this is achieved by repeated operation of a potent oxidative catalyst via electrophotocatalysis.</description><subject>639/638/161/886</subject><subject>639/638/403/933</subject><subject>639/638/439/890</subject><subject>639/638/77/886</subject><subject>639/638/77/890</subject><subject>Acids</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Dehydrogenation</subject><subject>Functional groups</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen bonds</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygenation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kL9OwzAQhy0EoqXwAgwoEgtLwI4d_xmhKhQJiQVmy3HskiqJS-xI7cY78IY8CS4pIDEw3XDf_e7uA-AUwUsEMb_yBOWcpjDLUphTyNP1HhgjwmhKKGf7YAxhxlPIMR2BI--XEMIcMXIIRpgSholgY3Azq40OnVu9uOC0CqrehEonbr1ZmFaFyrWJs0nT16Fa1SZR5VJp04Zk-vH2Pk8K15b-GBxYVXtzsqsT8Hw7e5rO04fHu_vp9UOqCRIhRSJHBeeltlZYIrhlgpVIaQFpoRU1prRWGVRgxXUZ30OQaayg4jaPPMd4Ai6G3FXnXnvjg2wqr01dq9a43suMMSSwoIJF9PwPunR918brtlTOBBe5iFQ2ULpz3nfGylVXNarbSATl1rAcDMtoWH4Zlus4dLaL7ovGlD8j30ojgAfAx1a7MN3v7n9iPwEEi4iT</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Shen, Tao</creator><creator>Li, Yi-Lun</creator><creator>Ye, Ke-Yin</creator><creator>Lambert, Tristan H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3955-7079</orcidid><orcidid>https://orcid.org/0000-0002-7720-3290</orcidid></search><sort><creationdate>20230209</creationdate><title>Electrophotocatalytic oxygenation of multiple adjacent C–H bonds</title><author>Shen, Tao ; Li, Yi-Lun ; Ye, Ke-Yin ; Lambert, Tristan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-1951b88dcff9f498f797d1ac906bca6eedffae1b3a8cd038107c3a0a8f59f4833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/638/161/886</topic><topic>639/638/403/933</topic><topic>639/638/439/890</topic><topic>639/638/77/886</topic><topic>639/638/77/890</topic><topic>Acids</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Dehydrogenation</topic><topic>Functional groups</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen bonds</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygenation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Li, Yi-Lun</creatorcontrib><creatorcontrib>Ye, Ke-Yin</creatorcontrib><creatorcontrib>Lambert, Tristan H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Tao</au><au>Li, Yi-Lun</au><au>Ye, Ke-Yin</au><au>Lambert, Tristan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrophotocatalytic oxygenation of multiple adjacent C–H bonds</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-02-09</date><risdate>2023</risdate><volume>614</volume><issue>7947</issue><spage>275</spage><epage>280</epage><pages>275-280</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Oxygen-containing functional groups are nearly ubiquitous in complex small molecules. The installation of multiple C–O bonds by the concurrent oxygenation of contiguous C–H bonds in a selective fashion would be highly desirable but has largely been the purview of biosynthesis. Multiple, concurrent C–H bond oxygenation reactions by synthetic means presents a challenge
1
–
6
, particularly because of the risk of overoxidation. Here we report the selective oxygenation of two or three contiguous C–H bonds by dehydrogenation and oxygenation, enabling the conversion of simple alkylarenes or trifluoroacetamides to their corresponding di- or triacetoxylates. The method achieves such transformations by the repeated operation of a potent oxidative catalyst, but under conditions that are sufficiently selective to avoid destructive overoxidation. These reactions are achieved using electrophotocatalysis
7
, a process that harnesses the energy of both light and electricity to promote chemical reactions. Notably, the judicious choice of acid allows for the selective synthesis of either di- or trioxygenated products.
Installation of multiple C–O bonds by concurrent oxygenation of contiguous C–H bonds in a selective fashion is highly desirable, and this is achieved by repeated operation of a potent oxidative catalyst via electrophotocatalysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36473497</pmid><doi>10.1038/s41586-022-05608-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3955-7079</orcidid><orcidid>https://orcid.org/0000-0002-7720-3290</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2023-02, Vol.614 (7947), p.275-280 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2771939697 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/638/161/886 639/638/403/933 639/638/439/890 639/638/77/886 639/638/77/890 Acids Biosynthesis Carbon Catalysts Chemical bonds Chemical reactions Dehydrogenation Functional groups Humanities and Social Sciences Hydrogen bonds multidisciplinary Oxidation Oxygen Oxygenation Science Science (multidisciplinary) |
title | Electrophotocatalytic oxygenation of multiple adjacent C–H bonds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrophotocatalytic%20oxygenation%20of%20multiple%20adjacent%20C%E2%80%93H%20bonds&rft.jtitle=Nature%20(London)&rft.au=Shen,%20Tao&rft.date=2023-02-09&rft.volume=614&rft.issue=7947&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05608-x&rft_dat=%3Cproquest_cross%3E2771939697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775798959&rft_id=info:pmid/36473497&rfr_iscdi=true |