Aspects Of The Atmospheric Surface Layers On Mars And Earth

The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2002-12, Vol.105 (3), p.451-470
Hauptverfasser: Larsen, S. E., Jørgensen, H. E., Landberg, L., Tillman, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 3
container_start_page 451
container_title Boundary-layer meteorology
container_volume 105
creator Larsen, S. E.
Jørgensen, H. E.
Landberg, L.
Tillman, J. E.
description The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance of the atmospheric heat flux in the surface energy budget. This increases the temperature variation of the surface forcing the near-surface temperature gradient and thereby the diabatic heat flux to higher values than are typical on the Earth, resulting in turn in a deeper daytime boundary layer. As wind speed is much like that of the Earth, this larger diabatic heat flux is carried mostly by larger maximal values of T^sub *^, the surface scale temperature. The higher kinematic viscosity yields a Kolmogorov scale of the order of ten times larger than on Earth, influencing the transition between rough and smooth flow for the same surface features.The scaling laws have been validated analysing the Martian surface-layer data for the relations between the power spectra of wind and temperature turbulence and the corresponding mean values of wind speed and temperature. Usual spectral formulations were used based on the scaling laws ruling the Earth atmospheric surface layer, whereby the Earth's atmosphere is used as a standard for the Martian atmosphere.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1020338016753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27717660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101584561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e26e21a94207b0682245e7b512144fbf07a78bbc46cf05b778b0b087c41abfe23</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqUws0YMbKHv2Y5fClOEyodU1IEyW7ax1VZtEuxk6L8nVVlgYTq60tGV7mXsGuEOgYtJdT8AhCgBFRXihI2wIJGjJH7KRgCg8lKgPGcXKW2GSFjAiD1UqfWuS9kiZMuVz6pu16R25ePaZe99DMb5bG72Pg5Gnb2ZgVX9mc1M7FaX7CyYbfJXPxyzj6fZ8vElny-eXx-ree4EL7vcc-U5mqnkQBZUybksPNkCOUoZbAAyVFrrpHIBCktDAAslOYnGBs_FmN0ee9vYfPU-dXq3Ts5vt6b2TZ80J0JSCv4VsZTTw0ODePNH3DR9rIcRmgQVqJAObZOj5GKTUvRBt3G9M3GvEfThcl3pX5eLb2bMcAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>737516170</pqid></control><display><type>article</type><title>Aspects Of The Atmospheric Surface Layers On Mars And Earth</title><source>SpringerLink Journals - AutoHoldings</source><creator>Larsen, S. E. ; Jørgensen, H. E. ; Landberg, L. ; Tillman, J. E.</creator><creatorcontrib>Larsen, S. E. ; Jørgensen, H. E. ; Landberg, L. ; Tillman, J. E.</creatorcontrib><description>The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance of the atmospheric heat flux in the surface energy budget. This increases the temperature variation of the surface forcing the near-surface temperature gradient and thereby the diabatic heat flux to higher values than are typical on the Earth, resulting in turn in a deeper daytime boundary layer. As wind speed is much like that of the Earth, this larger diabatic heat flux is carried mostly by larger maximal values of T^sub *^, the surface scale temperature. The higher kinematic viscosity yields a Kolmogorov scale of the order of ten times larger than on Earth, influencing the transition between rough and smooth flow for the same surface features.The scaling laws have been validated analysing the Martian surface-layer data for the relations between the power spectra of wind and temperature turbulence and the corresponding mean values of wind speed and temperature. Usual spectral formulations were used based on the scaling laws ruling the Earth atmospheric surface layer, whereby the Earth's atmosphere is used as a standard for the Martian atmosphere.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1023/A:1020338016753</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Atmospheric turbulence ; Boundary layers ; Earth ; Fluctuations ; Kinematic viscosity ; Mars ; Meteorology ; Surface temperature ; Temperature gradients ; Turbulence ; Water vapor ; Wind speed</subject><ispartof>Boundary-layer meteorology, 2002-12, Vol.105 (3), p.451-470</ispartof><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e26e21a94207b0682245e7b512144fbf07a78bbc46cf05b778b0b087c41abfe23</citedby><cites>FETCH-LOGICAL-c328t-e26e21a94207b0682245e7b512144fbf07a78bbc46cf05b778b0b087c41abfe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Larsen, S. E.</creatorcontrib><creatorcontrib>Jørgensen, H. E.</creatorcontrib><creatorcontrib>Landberg, L.</creatorcontrib><creatorcontrib>Tillman, J. E.</creatorcontrib><title>Aspects Of The Atmospheric Surface Layers On Mars And Earth</title><title>Boundary-layer meteorology</title><description>The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance of the atmospheric heat flux in the surface energy budget. This increases the temperature variation of the surface forcing the near-surface temperature gradient and thereby the diabatic heat flux to higher values than are typical on the Earth, resulting in turn in a deeper daytime boundary layer. As wind speed is much like that of the Earth, this larger diabatic heat flux is carried mostly by larger maximal values of T^sub *^, the surface scale temperature. The higher kinematic viscosity yields a Kolmogorov scale of the order of ten times larger than on Earth, influencing the transition between rough and smooth flow for the same surface features.The scaling laws have been validated analysing the Martian surface-layer data for the relations between the power spectra of wind and temperature turbulence and the corresponding mean values of wind speed and temperature. Usual spectral formulations were used based on the scaling laws ruling the Earth atmospheric surface layer, whereby the Earth's atmosphere is used as a standard for the Martian atmosphere.[PUBLICATION ABSTRACT]</description><subject>Atmospheric turbulence</subject><subject>Boundary layers</subject><subject>Earth</subject><subject>Fluctuations</subject><subject>Kinematic viscosity</subject><subject>Mars</subject><subject>Meteorology</subject><subject>Surface temperature</subject><subject>Temperature gradients</subject><subject>Turbulence</subject><subject>Water vapor</subject><subject>Wind speed</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkD1PwzAURS0EEqUws0YMbKHv2Y5fClOEyodU1IEyW7ax1VZtEuxk6L8nVVlgYTq60tGV7mXsGuEOgYtJdT8AhCgBFRXihI2wIJGjJH7KRgCg8lKgPGcXKW2GSFjAiD1UqfWuS9kiZMuVz6pu16R25ePaZe99DMb5bG72Pg5Gnb2ZgVX9mc1M7FaX7CyYbfJXPxyzj6fZ8vElny-eXx-ree4EL7vcc-U5mqnkQBZUybksPNkCOUoZbAAyVFrrpHIBCktDAAslOYnGBs_FmN0ee9vYfPU-dXq3Ts5vt6b2TZ80J0JSCv4VsZTTw0ODePNH3DR9rIcRmgQVqJAObZOj5GKTUvRBt3G9M3GvEfThcl3pX5eLb2bMcAY</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Larsen, S. E.</creator><creator>Jørgensen, H. E.</creator><creator>Landberg, L.</creator><creator>Tillman, J. E.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20021201</creationdate><title>Aspects Of The Atmospheric Surface Layers On Mars And Earth</title><author>Larsen, S. E. ; Jørgensen, H. E. ; Landberg, L. ; Tillman, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e26e21a94207b0682245e7b512144fbf07a78bbc46cf05b778b0b087c41abfe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Atmospheric turbulence</topic><topic>Boundary layers</topic><topic>Earth</topic><topic>Fluctuations</topic><topic>Kinematic viscosity</topic><topic>Mars</topic><topic>Meteorology</topic><topic>Surface temperature</topic><topic>Temperature gradients</topic><topic>Turbulence</topic><topic>Water vapor</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larsen, S. E.</creatorcontrib><creatorcontrib>Jørgensen, H. E.</creatorcontrib><creatorcontrib>Landberg, L.</creatorcontrib><creatorcontrib>Tillman, J. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larsen, S. E.</au><au>Jørgensen, H. E.</au><au>Landberg, L.</au><au>Tillman, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aspects Of The Atmospheric Surface Layers On Mars And Earth</atitle><jtitle>Boundary-layer meteorology</jtitle><date>2002-12-01</date><risdate>2002</risdate><volume>105</volume><issue>3</issue><spage>451</spage><epage>470</epage><pages>451-470</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance of the atmospheric heat flux in the surface energy budget. This increases the temperature variation of the surface forcing the near-surface temperature gradient and thereby the diabatic heat flux to higher values than are typical on the Earth, resulting in turn in a deeper daytime boundary layer. As wind speed is much like that of the Earth, this larger diabatic heat flux is carried mostly by larger maximal values of T^sub *^, the surface scale temperature. The higher kinematic viscosity yields a Kolmogorov scale of the order of ten times larger than on Earth, influencing the transition between rough and smooth flow for the same surface features.The scaling laws have been validated analysing the Martian surface-layer data for the relations between the power spectra of wind and temperature turbulence and the corresponding mean values of wind speed and temperature. Usual spectral formulations were used based on the scaling laws ruling the Earth atmospheric surface layer, whereby the Earth's atmosphere is used as a standard for the Martian atmosphere.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1020338016753</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2002-12, Vol.105 (3), p.451-470
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_27717660
source SpringerLink Journals - AutoHoldings
subjects Atmospheric turbulence
Boundary layers
Earth
Fluctuations
Kinematic viscosity
Mars
Meteorology
Surface temperature
Temperature gradients
Turbulence
Water vapor
Wind speed
title Aspects Of The Atmospheric Surface Layers On Mars And Earth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aspects%20Of%20The%20Atmospheric%20Surface%20Layers%20On%20Mars%20And%20Earth&rft.jtitle=Boundary-layer%20meteorology&rft.au=Larsen,%20S.%20E.&rft.date=2002-12-01&rft.volume=105&rft.issue=3&rft.spage=451&rft.epage=470&rft.pages=451-470&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1023/A:1020338016753&rft_dat=%3Cproquest_cross%3E2101584561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=737516170&rft_id=info:pmid/&rfr_iscdi=true