Sequential assimilation of stratospheric chemical observations in a three-dimensional model

We describe a technique to assimilate chemical observations in a three‐dimensional (3‐D) chemical transport model (CTM). The method uses the established sequential technique of Khattatov et al. [2000], but here, it is applied simultaneously to many observed species. Following the assimilation, care...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2002-11, Vol.107 (D21), p.ACH 8-1-ACH 8-14
Hauptverfasser: Chipperfield, M. P., Khattatov, B. V., Lary, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page ACH 8-14
container_issue D21
container_start_page ACH 8-1
container_title Journal of Geophysical Research. D. Atmospheres
container_volume 107
creator Chipperfield, M. P.
Khattatov, B. V.
Lary, D. J.
description We describe a technique to assimilate chemical observations in a three‐dimensional (3‐D) chemical transport model (CTM). The method uses the established sequential technique of Khattatov et al. [2000], but here, it is applied simultaneously to many observed species. Following the assimilation, care is taken to preserve compact correlations between all modeled long‐lived tracers and the total abundance of reactive families (e.g., inorganic chlorine). This way, the observations of long‐lived tracers and family members constrain many other species in the model. In this paper, we apply the technique to the assimilation of O3, CH4, H2O, and HCl from the Halogen Occultation Experiment (HALOE) in 1992. Despite the poor coverage of HALOE, the assimilation of species with long photochemical lifetimes is a useful global constraint on the model. Results of the assimilation model have been tested by comparison with Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) profiles of O3, CH4, H2O, HCl, and N2O. Direct comparison of the assimilated species shows that the assimilation model performs better in reproducing the independent observations. Comparison of the nonassimilated species (N2O) shows that assimilation has generally improved the comparison, especially in the midlatitude lower stratosphere.
doi_str_mv 10.1029/2002JD002110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27717439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18701713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4145-cb326304c9f6af31c80fe944844c4a5b0cca978d1b2a4c5652417d40c06b0c2c3</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgChbtzR-wJ0-uTrKzye5RWq2WoqAVBQ8hm83S6H7UZKv23xutiCfNYQLJ8w7MEHJA4ZgCy08YAJuOQ6EUtsiA0ZTHjAHbJgOgmMXAmNglQ--fIBxMOQIdkMdb87IybW9VHSnvbWNr1duujboq8r1TfeeXC-OsjvTCNFYH1hXeuNcv5SPbRirqF86YuLSNaX14DabpSlPvk51K1d4Mv-89cnd-Nh9dxLPryeXodBZrpJjGukgYTwB1XnFVJVRnUJkcMUPUqNICtFa5yEpaMIU65SlDKkoEDTz8MZ3skcNN36XrwjC-l4312tS1ak238pIJQQUm-b-QZgKooEmARxuoXee9M5VcOtsot5YU5Oe25e9tB842_M3WZv2nldPJzTjnmIZQvAlZ35v3n5Byz5KLRKTy_moip_PRg8CMS0g-AOhGj6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18701713</pqid></control><display><type>article</type><title>Sequential assimilation of stratospheric chemical observations in a three-dimensional model</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Chipperfield, M. P. ; Khattatov, B. V. ; Lary, D. J.</creator><creatorcontrib>Chipperfield, M. P. ; Khattatov, B. V. ; Lary, D. J.</creatorcontrib><description>We describe a technique to assimilate chemical observations in a three‐dimensional (3‐D) chemical transport model (CTM). The method uses the established sequential technique of Khattatov et al. [2000], but here, it is applied simultaneously to many observed species. Following the assimilation, care is taken to preserve compact correlations between all modeled long‐lived tracers and the total abundance of reactive families (e.g., inorganic chlorine). This way, the observations of long‐lived tracers and family members constrain many other species in the model. In this paper, we apply the technique to the assimilation of O3, CH4, H2O, and HCl from the Halogen Occultation Experiment (HALOE) in 1992. Despite the poor coverage of HALOE, the assimilation of species with long photochemical lifetimes is a useful global constraint on the model. Results of the assimilation model have been tested by comparison with Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) profiles of O3, CH4, H2O, HCl, and N2O. Direct comparison of the assimilated species shows that the assimilation model performs better in reproducing the independent observations. Comparison of the nonassimilated species (N2O) shows that assimilation has generally improved the comparison, especially in the midlatitude lower stratosphere.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2002JD002110</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>3-D CTM ; atmospheric chemistry ; data assimilation ; modeling</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2002-11, Vol.107 (D21), p.ACH 8-1-ACH 8-14</ispartof><rights>Copyright 2002 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4145-cb326304c9f6af31c80fe944844c4a5b0cca978d1b2a4c5652417d40c06b0c2c3</citedby><cites>FETCH-LOGICAL-c4145-cb326304c9f6af31c80fe944844c4a5b0cca978d1b2a4c5652417d40c06b0c2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002JD002110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002JD002110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11512,27922,27923,45572,45573,46407,46466,46831,46890</link.rule.ids></links><search><creatorcontrib>Chipperfield, M. P.</creatorcontrib><creatorcontrib>Khattatov, B. V.</creatorcontrib><creatorcontrib>Lary, D. J.</creatorcontrib><title>Sequential assimilation of stratospheric chemical observations in a three-dimensional model</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>We describe a technique to assimilate chemical observations in a three‐dimensional (3‐D) chemical transport model (CTM). The method uses the established sequential technique of Khattatov et al. [2000], but here, it is applied simultaneously to many observed species. Following the assimilation, care is taken to preserve compact correlations between all modeled long‐lived tracers and the total abundance of reactive families (e.g., inorganic chlorine). This way, the observations of long‐lived tracers and family members constrain many other species in the model. In this paper, we apply the technique to the assimilation of O3, CH4, H2O, and HCl from the Halogen Occultation Experiment (HALOE) in 1992. Despite the poor coverage of HALOE, the assimilation of species with long photochemical lifetimes is a useful global constraint on the model. Results of the assimilation model have been tested by comparison with Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) profiles of O3, CH4, H2O, HCl, and N2O. Direct comparison of the assimilated species shows that the assimilation model performs better in reproducing the independent observations. Comparison of the nonassimilated species (N2O) shows that assimilation has generally improved the comparison, especially in the midlatitude lower stratosphere.</description><subject>3-D CTM</subject><subject>atmospheric chemistry</subject><subject>data assimilation</subject><subject>modeling</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LAzEQBuAgChbtzR-wJ0-uTrKzye5RWq2WoqAVBQ8hm83S6H7UZKv23xutiCfNYQLJ8w7MEHJA4ZgCy08YAJuOQ6EUtsiA0ZTHjAHbJgOgmMXAmNglQ--fIBxMOQIdkMdb87IybW9VHSnvbWNr1duujboq8r1TfeeXC-OsjvTCNFYH1hXeuNcv5SPbRirqF86YuLSNaX14DabpSlPvk51K1d4Mv-89cnd-Nh9dxLPryeXodBZrpJjGukgYTwB1XnFVJVRnUJkcMUPUqNICtFa5yEpaMIU65SlDKkoEDTz8MZ3skcNN36XrwjC-l4312tS1ak238pIJQQUm-b-QZgKooEmARxuoXee9M5VcOtsot5YU5Oe25e9tB842_M3WZv2nldPJzTjnmIZQvAlZ35v3n5Byz5KLRKTy_moip_PRg8CMS0g-AOhGj6Y</recordid><startdate>20021116</startdate><enddate>20021116</enddate><creator>Chipperfield, M. P.</creator><creator>Khattatov, B. V.</creator><creator>Lary, D. J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20021116</creationdate><title>Sequential assimilation of stratospheric chemical observations in a three-dimensional model</title><author>Chipperfield, M. P. ; Khattatov, B. V. ; Lary, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4145-cb326304c9f6af31c80fe944844c4a5b0cca978d1b2a4c5652417d40c06b0c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>3-D CTM</topic><topic>atmospheric chemistry</topic><topic>data assimilation</topic><topic>modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chipperfield, M. P.</creatorcontrib><creatorcontrib>Khattatov, B. V.</creatorcontrib><creatorcontrib>Lary, D. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chipperfield, M. P.</au><au>Khattatov, B. V.</au><au>Lary, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential assimilation of stratospheric chemical observations in a three-dimensional model</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2002-11-16</date><risdate>2002</risdate><volume>107</volume><issue>D21</issue><spage>ACH 8-1</spage><epage>ACH 8-14</epage><pages>ACH 8-1-ACH 8-14</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We describe a technique to assimilate chemical observations in a three‐dimensional (3‐D) chemical transport model (CTM). The method uses the established sequential technique of Khattatov et al. [2000], but here, it is applied simultaneously to many observed species. Following the assimilation, care is taken to preserve compact correlations between all modeled long‐lived tracers and the total abundance of reactive families (e.g., inorganic chlorine). This way, the observations of long‐lived tracers and family members constrain many other species in the model. In this paper, we apply the technique to the assimilation of O3, CH4, H2O, and HCl from the Halogen Occultation Experiment (HALOE) in 1992. Despite the poor coverage of HALOE, the assimilation of species with long photochemical lifetimes is a useful global constraint on the model. Results of the assimilation model have been tested by comparison with Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) profiles of O3, CH4, H2O, HCl, and N2O. Direct comparison of the assimilated species shows that the assimilation model performs better in reproducing the independent observations. Comparison of the nonassimilated species (N2O) shows that assimilation has generally improved the comparison, especially in the midlatitude lower stratosphere.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002JD002110</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. Atmospheres, 2002-11, Vol.107 (D21), p.ACH 8-1-ACH 8-14
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_27717439
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects 3-D CTM
atmospheric chemistry
data assimilation
modeling
title Sequential assimilation of stratospheric chemical observations in a three-dimensional model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20assimilation%20of%20stratospheric%20chemical%20observations%20in%20a%20three-dimensional%20model&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Chipperfield,%20M.%20P.&rft.date=2002-11-16&rft.volume=107&rft.issue=D21&rft.spage=ACH%208-1&rft.epage=ACH%208-14&rft.pages=ACH%208-1-ACH%208-14&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2002JD002110&rft_dat=%3Cproquest_cross%3E18701713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18701713&rft_id=info:pmid/&rfr_iscdi=true