Soft computing for greenhouse climate control

The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2000-12, Vol.8 (6), p.753-760
Hauptverfasser: Caponetto, R., Fortuna, L., Nunnari, G., Occhipinti, L., Xibilia, M.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 6
container_start_page 753
container_title IEEE transactions on fuzzy systems
container_volume 8
creator Caponetto, R.
Fortuna, L.
Nunnari, G.
Occhipinti, L.
Xibilia, M.G.
description The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and control using traditional techniques. The paper proposes a framework for the development of soft computing-based controllers in modern greenhouses.
doi_str_mv 10.1109/91.890333
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27717093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>890333</ieee_id><sourcerecordid>2570074361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQpDKxMEQOIIcWXc3L2iCq-pEoMwByljl1SpXGxk4F_j6tUDAwwnaV7ZN_5Zewc-AyAq1sFM6k4Ih6wCSgBKecoDuOZF5gWxItjdhLCmnMQOcgJS1-d7RPtNtuhb7pVYp1PVt6Y7sMNwSS6bTZVH6vreu_aU3ZkqzaYs32dsveH-7f5U7p4eXye3y1SjQX1qYzvF1gbIgs2R4Eiz0hqRC1MxjUhWCWkUoJqDbpSJKxZ1porlXOxrCRO2fV479a7z8GEvtw0QZu2rToT5yqllAAoIYvy6k-ZyYJTTsX_kAiIK4zw8hdcu8F3cd1SARGSFDt0MyLtXQje2HLr40_5rxJ4uQsi2nIMItqL0TbGmB-3b34DRYt_3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917737843</pqid></control><display><type>article</type><title>Soft computing for greenhouse climate control</title><source>IEEE Electronic Library (IEL)</source><creator>Caponetto, R. ; Fortuna, L. ; Nunnari, G. ; Occhipinti, L. ; Xibilia, M.G.</creator><creatorcontrib>Caponetto, R. ; Fortuna, L. ; Nunnari, G. ; Occhipinti, L. ; Xibilia, M.G.</creatorcontrib><description>The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and control using traditional techniques. The paper proposes a framework for the development of soft computing-based controllers in modern greenhouses.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/91.890333</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Control systems ; Expert systems ; Fuzzy logic ; Humidity control ; Nonlinear control systems ; PD control ; Plants (biology) ; Proportional control ; Temperature control</subject><ispartof>IEEE transactions on fuzzy systems, 2000-12, Vol.8 (6), p.753-760</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83</citedby><cites>FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/890333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/890333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caponetto, R.</creatorcontrib><creatorcontrib>Fortuna, L.</creatorcontrib><creatorcontrib>Nunnari, G.</creatorcontrib><creatorcontrib>Occhipinti, L.</creatorcontrib><creatorcontrib>Xibilia, M.G.</creatorcontrib><title>Soft computing for greenhouse climate control</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and control using traditional techniques. The paper proposes a framework for the development of soft computing-based controllers in modern greenhouses.</description><subject>Artificial intelligence</subject><subject>Control systems</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Humidity control</subject><subject>Nonlinear control systems</subject><subject>PD control</subject><subject>Plants (biology)</subject><subject>Proportional control</subject><subject>Temperature control</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1PwzAQBmALgUQpDKxMEQOIIcWXc3L2iCq-pEoMwByljl1SpXGxk4F_j6tUDAwwnaV7ZN_5Zewc-AyAq1sFM6k4Ih6wCSgBKecoDuOZF5gWxItjdhLCmnMQOcgJS1-d7RPtNtuhb7pVYp1PVt6Y7sMNwSS6bTZVH6vreu_aU3ZkqzaYs32dsveH-7f5U7p4eXye3y1SjQX1qYzvF1gbIgs2R4Eiz0hqRC1MxjUhWCWkUoJqDbpSJKxZ1porlXOxrCRO2fV479a7z8GEvtw0QZu2rToT5yqllAAoIYvy6k-ZyYJTTsX_kAiIK4zw8hdcu8F3cd1SARGSFDt0MyLtXQje2HLr40_5rxJ4uQsi2nIMItqL0TbGmB-3b34DRYt_3A</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Caponetto, R.</creator><creator>Fortuna, L.</creator><creator>Nunnari, G.</creator><creator>Occhipinti, L.</creator><creator>Xibilia, M.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20001201</creationdate><title>Soft computing for greenhouse climate control</title><author>Caponetto, R. ; Fortuna, L. ; Nunnari, G. ; Occhipinti, L. ; Xibilia, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-833363de77f1f534345278c33c4e20c731f9489947dc1ca974febdc099504ba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial intelligence</topic><topic>Control systems</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Humidity control</topic><topic>Nonlinear control systems</topic><topic>PD control</topic><topic>Plants (biology)</topic><topic>Proportional control</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caponetto, R.</creatorcontrib><creatorcontrib>Fortuna, L.</creatorcontrib><creatorcontrib>Nunnari, G.</creatorcontrib><creatorcontrib>Occhipinti, L.</creatorcontrib><creatorcontrib>Xibilia, M.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caponetto, R.</au><au>Fortuna, L.</au><au>Nunnari, G.</au><au>Occhipinti, L.</au><au>Xibilia, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft computing for greenhouse climate control</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2000-12-01</date><risdate>2000</risdate><volume>8</volume><issue>6</issue><spage>753</spage><epage>760</epage><pages>753-760</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>The methodology proposed in the paper applies artificial intelligence (AI) techniques to the modeling and control of some climate variables within a greenhouse. The nonlinear physical phenomena governing the dynamics of temperature and humidity in such systems are, in fact, difficult to model and control using traditional techniques. The paper proposes a framework for the development of soft computing-based controllers in modern greenhouses.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/91.890333</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2000-12, Vol.8 (6), p.753-760
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_miscellaneous_27717093
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Control systems
Expert systems
Fuzzy logic
Humidity control
Nonlinear control systems
PD control
Plants (biology)
Proportional control
Temperature control
title Soft computing for greenhouse climate control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20computing%20for%20greenhouse%20climate%20control&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Caponetto,%20R.&rft.date=2000-12-01&rft.volume=8&rft.issue=6&rft.spage=753&rft.epage=760&rft.pages=753-760&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/91.890333&rft_dat=%3Cproquest_RIE%3E2570074361%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917737843&rft_id=info:pmid/&rft_ieee_id=890333&rfr_iscdi=true