Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity
Causes of dopaminergic neuronal loss in Parkinson’s disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD...
Gespeichert in:
Veröffentlicht in: | Neurotoxicity research 2023-06, Vol.41 (3), p.224-241 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 3 |
container_start_page | 224 |
container_title | Neurotoxicity research |
container_volume | 41 |
creator | De Araújo, Fillipe Mendes Frota, Annyta F. de Jesus, Lívia B. Cuenca-Bermejo, Lorena Ferreira, Kariny Maria S. Santos, Cleonice Creusa Soares, Erica N. Souza, Jéssica T. Sanches, Flávia S. Costa, Ana Carla S. Farias, Alana A. de Fatima Dias Costa, Maria Munoz, Patrícia Menezes-Filho, José A. Segura-Aguilar, Juan Costa, Silvia Lima Herrero, Maria Trinidad Silva, Victor Diogenes Amaral |
description | Causes of dopaminergic neuronal loss in Parkinson’s disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1β (IL-1β) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity. |
doi_str_mv | 10.1007/s12640-022-00616-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771637467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771637467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-db4ffe87fbf01384ee1e013e5d15501a27ba64326aa0f7e3d6a235dd3905013f3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwAhxQjlwC_oudHquqLUgVIARny0nWxVUSFzup6NtjCHDktCPtzKz2Q-iS4BuCsbwNhAqOU0xpirEgIiVHaEy4FCnLKD-OGtNpmnOaj9BZCFuMKcmEPEUjJiRlMidjtHryroOys3tIFsZEFRJnkmWt9651tkqe-862yWyjbRu6ZNbY1pVv3jWQPEAfs-7DlrY7nKMTo-sAFz9zgl6Xi5f5Xbp-XN3PZ-u0ZFx2aVXweCSXpjCYsJwDEIgCsopkGSaaykILzqjQGhsJrBKasqyq2BTHNTNsgq6H3p137z2ETjU2lFDXugXXB0WlJIJJLmS00sFaeheCB6N23jbaHxTB6gugGgCqCFB9A1Qkhq5--vuigeov8kssGthgCHHVbsCrret9G3_-r_YTUxJ7fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771637467</pqid></control><display><type>article</type><title>Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>De Araújo, Fillipe Mendes ; Frota, Annyta F. ; de Jesus, Lívia B. ; Cuenca-Bermejo, Lorena ; Ferreira, Kariny Maria S. ; Santos, Cleonice Creusa ; Soares, Erica N. ; Souza, Jéssica T. ; Sanches, Flávia S. ; Costa, Ana Carla S. ; Farias, Alana A. ; de Fatima Dias Costa, Maria ; Munoz, Patrícia ; Menezes-Filho, José A. ; Segura-Aguilar, Juan ; Costa, Silvia Lima ; Herrero, Maria Trinidad ; Silva, Victor Diogenes Amaral</creator><creatorcontrib>De Araújo, Fillipe Mendes ; Frota, Annyta F. ; de Jesus, Lívia B. ; Cuenca-Bermejo, Lorena ; Ferreira, Kariny Maria S. ; Santos, Cleonice Creusa ; Soares, Erica N. ; Souza, Jéssica T. ; Sanches, Flávia S. ; Costa, Ana Carla S. ; Farias, Alana A. ; de Fatima Dias Costa, Maria ; Munoz, Patrícia ; Menezes-Filho, José A. ; Segura-Aguilar, Juan ; Costa, Silvia Lima ; Herrero, Maria Trinidad ; Silva, Victor Diogenes Amaral</creatorcontrib><description>Causes of dopaminergic neuronal loss in Parkinson’s disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1β (IL-1β) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.</description><identifier>ISSN: 1029-8428</identifier><identifier>EISSN: 1476-3524</identifier><identifier>DOI: 10.1007/s12640-022-00616-1</identifier><identifier>PMID: 36723781</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology ; Animals ; Anti-Inflammatory Agents - pharmacology ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Disease Models, Animal ; Dopamine - metabolism ; Dopaminergic Neurons ; Flavonoids - pharmacology ; Glial Cell Line-Derived Neurotrophic Factor - metabolism ; Mice ; Mice, Inbred C57BL ; Neurobiology ; Neurochemistry ; Neurology ; Neuroprotective Agents - therapeutic use ; Neurosciences ; Neurotoxicity Syndromes - drug therapy ; Neurotoxicity Syndromes - metabolism ; Neurotoxicity Syndromes - prevention & control ; Parkinson Disease - metabolism ; Pharmacology/Toxicology ; Research Article ; Rutin - pharmacology</subject><ispartof>Neurotoxicity research, 2023-06, Vol.41 (3), p.224-241</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-db4ffe87fbf01384ee1e013e5d15501a27ba64326aa0f7e3d6a235dd3905013f3</citedby><cites>FETCH-LOGICAL-c347t-db4ffe87fbf01384ee1e013e5d15501a27ba64326aa0f7e3d6a235dd3905013f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12640-022-00616-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12640-022-00616-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36723781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Araújo, Fillipe Mendes</creatorcontrib><creatorcontrib>Frota, Annyta F.</creatorcontrib><creatorcontrib>de Jesus, Lívia B.</creatorcontrib><creatorcontrib>Cuenca-Bermejo, Lorena</creatorcontrib><creatorcontrib>Ferreira, Kariny Maria S.</creatorcontrib><creatorcontrib>Santos, Cleonice Creusa</creatorcontrib><creatorcontrib>Soares, Erica N.</creatorcontrib><creatorcontrib>Souza, Jéssica T.</creatorcontrib><creatorcontrib>Sanches, Flávia S.</creatorcontrib><creatorcontrib>Costa, Ana Carla S.</creatorcontrib><creatorcontrib>Farias, Alana A.</creatorcontrib><creatorcontrib>de Fatima Dias Costa, Maria</creatorcontrib><creatorcontrib>Munoz, Patrícia</creatorcontrib><creatorcontrib>Menezes-Filho, José A.</creatorcontrib><creatorcontrib>Segura-Aguilar, Juan</creatorcontrib><creatorcontrib>Costa, Silvia Lima</creatorcontrib><creatorcontrib>Herrero, Maria Trinidad</creatorcontrib><creatorcontrib>Silva, Victor Diogenes Amaral</creatorcontrib><title>Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity</title><title>Neurotoxicity research</title><addtitle>Neurotox Res</addtitle><addtitle>Neurotox Res</addtitle><description>Causes of dopaminergic neuronal loss in Parkinson’s disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1β (IL-1β) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.</description><subject>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Disease Models, Animal</subject><subject>Dopamine - metabolism</subject><subject>Dopaminergic Neurons</subject><subject>Flavonoids - pharmacology</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurobiology</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Neurosciences</subject><subject>Neurotoxicity Syndromes - drug therapy</subject><subject>Neurotoxicity Syndromes - metabolism</subject><subject>Neurotoxicity Syndromes - prevention & control</subject><subject>Parkinson Disease - metabolism</subject><subject>Pharmacology/Toxicology</subject><subject>Research Article</subject><subject>Rutin - pharmacology</subject><issn>1029-8428</issn><issn>1476-3524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EoqXwAhxQjlwC_oudHquqLUgVIARny0nWxVUSFzup6NtjCHDktCPtzKz2Q-iS4BuCsbwNhAqOU0xpirEgIiVHaEy4FCnLKD-OGtNpmnOaj9BZCFuMKcmEPEUjJiRlMidjtHryroOys3tIFsZEFRJnkmWt9651tkqe-862yWyjbRu6ZNbY1pVv3jWQPEAfs-7DlrY7nKMTo-sAFz9zgl6Xi5f5Xbp-XN3PZ-u0ZFx2aVXweCSXpjCYsJwDEIgCsopkGSaaykILzqjQGhsJrBKasqyq2BTHNTNsgq6H3p137z2ETjU2lFDXugXXB0WlJIJJLmS00sFaeheCB6N23jbaHxTB6gugGgCqCFB9A1Qkhq5--vuigeov8kssGthgCHHVbsCrret9G3_-r_YTUxJ7fw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>De Araújo, Fillipe Mendes</creator><creator>Frota, Annyta F.</creator><creator>de Jesus, Lívia B.</creator><creator>Cuenca-Bermejo, Lorena</creator><creator>Ferreira, Kariny Maria S.</creator><creator>Santos, Cleonice Creusa</creator><creator>Soares, Erica N.</creator><creator>Souza, Jéssica T.</creator><creator>Sanches, Flávia S.</creator><creator>Costa, Ana Carla S.</creator><creator>Farias, Alana A.</creator><creator>de Fatima Dias Costa, Maria</creator><creator>Munoz, Patrícia</creator><creator>Menezes-Filho, José A.</creator><creator>Segura-Aguilar, Juan</creator><creator>Costa, Silvia Lima</creator><creator>Herrero, Maria Trinidad</creator><creator>Silva, Victor Diogenes Amaral</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230601</creationdate><title>Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity</title><author>De Araújo, Fillipe Mendes ; Frota, Annyta F. ; de Jesus, Lívia B. ; Cuenca-Bermejo, Lorena ; Ferreira, Kariny Maria S. ; Santos, Cleonice Creusa ; Soares, Erica N. ; Souza, Jéssica T. ; Sanches, Flávia S. ; Costa, Ana Carla S. ; Farias, Alana A. ; de Fatima Dias Costa, Maria ; Munoz, Patrícia ; Menezes-Filho, José A. ; Segura-Aguilar, Juan ; Costa, Silvia Lima ; Herrero, Maria Trinidad ; Silva, Victor Diogenes Amaral</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-db4ffe87fbf01384ee1e013e5d15501a27ba64326aa0f7e3d6a235dd3905013f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Disease Models, Animal</topic><topic>Dopamine - metabolism</topic><topic>Dopaminergic Neurons</topic><topic>Flavonoids - pharmacology</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurobiology</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Neurosciences</topic><topic>Neurotoxicity Syndromes - drug therapy</topic><topic>Neurotoxicity Syndromes - metabolism</topic><topic>Neurotoxicity Syndromes - prevention & control</topic><topic>Parkinson Disease - metabolism</topic><topic>Pharmacology/Toxicology</topic><topic>Research Article</topic><topic>Rutin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Araújo, Fillipe Mendes</creatorcontrib><creatorcontrib>Frota, Annyta F.</creatorcontrib><creatorcontrib>de Jesus, Lívia B.</creatorcontrib><creatorcontrib>Cuenca-Bermejo, Lorena</creatorcontrib><creatorcontrib>Ferreira, Kariny Maria S.</creatorcontrib><creatorcontrib>Santos, Cleonice Creusa</creatorcontrib><creatorcontrib>Soares, Erica N.</creatorcontrib><creatorcontrib>Souza, Jéssica T.</creatorcontrib><creatorcontrib>Sanches, Flávia S.</creatorcontrib><creatorcontrib>Costa, Ana Carla S.</creatorcontrib><creatorcontrib>Farias, Alana A.</creatorcontrib><creatorcontrib>de Fatima Dias Costa, Maria</creatorcontrib><creatorcontrib>Munoz, Patrícia</creatorcontrib><creatorcontrib>Menezes-Filho, José A.</creatorcontrib><creatorcontrib>Segura-Aguilar, Juan</creatorcontrib><creatorcontrib>Costa, Silvia Lima</creatorcontrib><creatorcontrib>Herrero, Maria Trinidad</creatorcontrib><creatorcontrib>Silva, Victor Diogenes Amaral</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neurotoxicity research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Araújo, Fillipe Mendes</au><au>Frota, Annyta F.</au><au>de Jesus, Lívia B.</au><au>Cuenca-Bermejo, Lorena</au><au>Ferreira, Kariny Maria S.</au><au>Santos, Cleonice Creusa</au><au>Soares, Erica N.</au><au>Souza, Jéssica T.</au><au>Sanches, Flávia S.</au><au>Costa, Ana Carla S.</au><au>Farias, Alana A.</au><au>de Fatima Dias Costa, Maria</au><au>Munoz, Patrícia</au><au>Menezes-Filho, José A.</au><au>Segura-Aguilar, Juan</au><au>Costa, Silvia Lima</au><au>Herrero, Maria Trinidad</au><au>Silva, Victor Diogenes Amaral</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity</atitle><jtitle>Neurotoxicity research</jtitle><stitle>Neurotox Res</stitle><addtitle>Neurotox Res</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>41</volume><issue>3</issue><spage>224</spage><epage>241</epage><pages>224-241</pages><issn>1029-8428</issn><eissn>1476-3524</eissn><abstract>Causes of dopaminergic neuronal loss in Parkinson’s disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1β (IL-1β) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36723781</pmid><doi>10.1007/s12640-022-00616-1</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8428 |
ispartof | Neurotoxicity research, 2023-06, Vol.41 (3), p.224-241 |
issn | 1029-8428 1476-3524 |
language | eng |
recordid | cdi_proquest_miscellaneous_2771637467 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology Animals Anti-Inflammatory Agents - pharmacology Biomedical and Life Sciences Biomedicine Cell Biology Disease Models, Animal Dopamine - metabolism Dopaminergic Neurons Flavonoids - pharmacology Glial Cell Line-Derived Neurotrophic Factor - metabolism Mice Mice, Inbred C57BL Neurobiology Neurochemistry Neurology Neuroprotective Agents - therapeutic use Neurosciences Neurotoxicity Syndromes - drug therapy Neurotoxicity Syndromes - metabolism Neurotoxicity Syndromes - prevention & control Parkinson Disease - metabolism Pharmacology/Toxicology Research Article Rutin - pharmacology |
title | Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protective%20Effects%20of%20Flavonoid%20Rutin%20Against%20Aminochrome%20Neurotoxicity&rft.jtitle=Neurotoxicity%20research&rft.au=De%20Ara%C3%BAjo,%20Fillipe%20Mendes&rft.date=2023-06-01&rft.volume=41&rft.issue=3&rft.spage=224&rft.epage=241&rft.pages=224-241&rft.issn=1029-8428&rft.eissn=1476-3524&rft_id=info:doi/10.1007/s12640-022-00616-1&rft_dat=%3Cproquest_cross%3E2771637467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771637467&rft_id=info:pmid/36723781&rfr_iscdi=true |