The direct catalytic synthesis of ultrasmall Cu2O-coordinated carbon nitrides on ceria for multimodal antitumor therapy

Engineering chem-/sono-/photo-multimodal antitumor therapies has become an efficient strategy to combat malignant tumors. However, the existence of hypoxia in the tumor microenvironment (TME) leads to limited sonodynamic or photodynamic efficiency because O2 is the key reactant during the process of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2023-04, Vol.10 (4), p.1342-1353
Hauptverfasser: Cao, Lijian, Feng, Ziyan, Guo, Ruiqian, Tian, Qinyu, Wang, Weiwen, Xiao Rong, Zhou, Mi, Cheng, Chong, Tian, Ma, Deng, Dawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1353
container_issue 4
container_start_page 1342
container_title Materials horizons
container_volume 10
creator Cao, Lijian
Feng, Ziyan
Guo, Ruiqian
Tian, Qinyu
Wang, Weiwen
Xiao Rong
Zhou, Mi
Cheng, Chong
Tian, Ma
Deng, Dawei
description Engineering chem-/sono-/photo-multimodal antitumor therapies has become an efficient strategy to combat malignant tumors. However, the existence of hypoxia in the tumor microenvironment (TME) leads to limited sonodynamic or photodynamic efficiency because O2 is the key reactant during the process of generation of reactive oxygen species (ROS). Here, to design a desirable platform that can simultaneously convert H2O2 in the TME into ROS and O2 for efficient chem-/sono-/photo-multimodal tumor therapies, we have created ultrasmall Cu2O-coordinated carbon nitride on a biocompatible ceria substrate (denoted as Cu2O-CNx@CeO2) via a self-assisted catalytic growth strategy. The chemical and morphological structures, ROS and O2 generation activities, and chemo-/photo-/sono-dynamic specificities of Cu2O-CNx@CeO2 when serving as multifunctional biocatalytic agents were systematically disclosed. The experimental studies validated that Cu2O-CNx@CeO2 presents state-of-the-art peroxidase-like and catalase-like activities. Moreover, the light excitation and ultrasound irradiation were also demonstrated to boost ROS production. The in vitro and in vivo experiments suggest that Cu2O-CNx@CeO2 can efficiently inhibit the growth of malignant melanoma via chem-/sono-/photo-multimodal antitumor ability. We believe that applying these new biocatalysts with dual catalytic activities of producing ROS and O2 will offer a new path for engineering multimodal nanoagents to combat malignant tumors.
doi_str_mv 10.1039/d2mh01540d
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771637109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771637109</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-b568f7929b938e92d4cef3ad424e2e8fc3d2845d16eb42a9ba4e4c857cfbc2323</originalsourceid><addsrcrecordid>eNpdjk1LAzEQhoMoWGov_oKAFy-r-dzdHKX4BYVe6rlkk1makk1qkkX67w0oHjzNMDzvMy9Ct5Q8UMLVo2XTgVApiL1AC0YkbVou5eXfLrprtMr5SAihXEjSkwX62h0AW5fAFGx00f5cnMH5HMoBsss4jnj2Jek8ae_xembbxsSYrAu6gK2RNMSAgyvJWah4wAaS03iMCU816aZotcc6FFfmqR6rN-nT-QZdjdpnWP3OJfp4ed6t35rN9vV9_bRpToy2pRlk24-dYmpQvAfFrDAwcm0FE8CgHw23rBfS0hYGwbQatABhetmZcTCMM75E9z_eU4qfM-Syn1w24L0OEOe8Z11HW95Roip69w89xjmF2q5S9X2vVBV-A37pbus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793889932</pqid></control><display><type>article</type><title>The direct catalytic synthesis of ultrasmall Cu2O-coordinated carbon nitrides on ceria for multimodal antitumor therapy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cao, Lijian ; Feng, Ziyan ; Guo, Ruiqian ; Tian, Qinyu ; Wang, Weiwen ; Xiao Rong ; Zhou, Mi ; Cheng, Chong ; Tian, Ma ; Deng, Dawei</creator><creatorcontrib>Cao, Lijian ; Feng, Ziyan ; Guo, Ruiqian ; Tian, Qinyu ; Wang, Weiwen ; Xiao Rong ; Zhou, Mi ; Cheng, Chong ; Tian, Ma ; Deng, Dawei</creatorcontrib><description>Engineering chem-/sono-/photo-multimodal antitumor therapies has become an efficient strategy to combat malignant tumors. However, the existence of hypoxia in the tumor microenvironment (TME) leads to limited sonodynamic or photodynamic efficiency because O2 is the key reactant during the process of generation of reactive oxygen species (ROS). Here, to design a desirable platform that can simultaneously convert H2O2 in the TME into ROS and O2 for efficient chem-/sono-/photo-multimodal tumor therapies, we have created ultrasmall Cu2O-coordinated carbon nitride on a biocompatible ceria substrate (denoted as Cu2O-CNx@CeO2) via a self-assisted catalytic growth strategy. The chemical and morphological structures, ROS and O2 generation activities, and chemo-/photo-/sono-dynamic specificities of Cu2O-CNx@CeO2 when serving as multifunctional biocatalytic agents were systematically disclosed. The experimental studies validated that Cu2O-CNx@CeO2 presents state-of-the-art peroxidase-like and catalase-like activities. Moreover, the light excitation and ultrasound irradiation were also demonstrated to boost ROS production. The in vitro and in vivo experiments suggest that Cu2O-CNx@CeO2 can efficiently inhibit the growth of malignant melanoma via chem-/sono-/photo-multimodal antitumor ability. We believe that applying these new biocatalysts with dual catalytic activities of producing ROS and O2 will offer a new path for engineering multimodal nanoagents to combat malignant tumors.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d2mh01540d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Carbon ; Carbon nitride ; Catalase ; Cerium oxides ; Chemical synthesis ; Copper oxides ; Hydrogen peroxide ; Hypoxia ; Peroxidase ; Substrates ; Tumors</subject><ispartof>Materials horizons, 2023-04, Vol.10 (4), p.1342-1353</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cao, Lijian</creatorcontrib><creatorcontrib>Feng, Ziyan</creatorcontrib><creatorcontrib>Guo, Ruiqian</creatorcontrib><creatorcontrib>Tian, Qinyu</creatorcontrib><creatorcontrib>Wang, Weiwen</creatorcontrib><creatorcontrib>Xiao Rong</creatorcontrib><creatorcontrib>Zhou, Mi</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Tian, Ma</creatorcontrib><creatorcontrib>Deng, Dawei</creatorcontrib><title>The direct catalytic synthesis of ultrasmall Cu2O-coordinated carbon nitrides on ceria for multimodal antitumor therapy</title><title>Materials horizons</title><description>Engineering chem-/sono-/photo-multimodal antitumor therapies has become an efficient strategy to combat malignant tumors. However, the existence of hypoxia in the tumor microenvironment (TME) leads to limited sonodynamic or photodynamic efficiency because O2 is the key reactant during the process of generation of reactive oxygen species (ROS). Here, to design a desirable platform that can simultaneously convert H2O2 in the TME into ROS and O2 for efficient chem-/sono-/photo-multimodal tumor therapies, we have created ultrasmall Cu2O-coordinated carbon nitride on a biocompatible ceria substrate (denoted as Cu2O-CNx@CeO2) via a self-assisted catalytic growth strategy. The chemical and morphological structures, ROS and O2 generation activities, and chemo-/photo-/sono-dynamic specificities of Cu2O-CNx@CeO2 when serving as multifunctional biocatalytic agents were systematically disclosed. The experimental studies validated that Cu2O-CNx@CeO2 presents state-of-the-art peroxidase-like and catalase-like activities. Moreover, the light excitation and ultrasound irradiation were also demonstrated to boost ROS production. The in vitro and in vivo experiments suggest that Cu2O-CNx@CeO2 can efficiently inhibit the growth of malignant melanoma via chem-/sono-/photo-multimodal antitumor ability. We believe that applying these new biocatalysts with dual catalytic activities of producing ROS and O2 will offer a new path for engineering multimodal nanoagents to combat malignant tumors.</description><subject>Biocompatibility</subject><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Catalase</subject><subject>Cerium oxides</subject><subject>Chemical synthesis</subject><subject>Copper oxides</subject><subject>Hydrogen peroxide</subject><subject>Hypoxia</subject><subject>Peroxidase</subject><subject>Substrates</subject><subject>Tumors</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdjk1LAzEQhoMoWGov_oKAFy-r-dzdHKX4BYVe6rlkk1makk1qkkX67w0oHjzNMDzvMy9Ct5Q8UMLVo2XTgVApiL1AC0YkbVou5eXfLrprtMr5SAihXEjSkwX62h0AW5fAFGx00f5cnMH5HMoBsss4jnj2Jek8ae_xembbxsSYrAu6gK2RNMSAgyvJWah4wAaS03iMCU816aZotcc6FFfmqR6rN-nT-QZdjdpnWP3OJfp4ed6t35rN9vV9_bRpToy2pRlk24-dYmpQvAfFrDAwcm0FE8CgHw23rBfS0hYGwbQatABhetmZcTCMM75E9z_eU4qfM-Syn1w24L0OEOe8Z11HW95Roip69w89xjmF2q5S9X2vVBV-A37pbus</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Cao, Lijian</creator><creator>Feng, Ziyan</creator><creator>Guo, Ruiqian</creator><creator>Tian, Qinyu</creator><creator>Wang, Weiwen</creator><creator>Xiao Rong</creator><creator>Zhou, Mi</creator><creator>Cheng, Chong</creator><creator>Tian, Ma</creator><creator>Deng, Dawei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230403</creationdate><title>The direct catalytic synthesis of ultrasmall Cu2O-coordinated carbon nitrides on ceria for multimodal antitumor therapy</title><author>Cao, Lijian ; Feng, Ziyan ; Guo, Ruiqian ; Tian, Qinyu ; Wang, Weiwen ; Xiao Rong ; Zhou, Mi ; Cheng, Chong ; Tian, Ma ; Deng, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-b568f7929b938e92d4cef3ad424e2e8fc3d2845d16eb42a9ba4e4c857cfbc2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Catalase</topic><topic>Cerium oxides</topic><topic>Chemical synthesis</topic><topic>Copper oxides</topic><topic>Hydrogen peroxide</topic><topic>Hypoxia</topic><topic>Peroxidase</topic><topic>Substrates</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Lijian</creatorcontrib><creatorcontrib>Feng, Ziyan</creatorcontrib><creatorcontrib>Guo, Ruiqian</creatorcontrib><creatorcontrib>Tian, Qinyu</creatorcontrib><creatorcontrib>Wang, Weiwen</creatorcontrib><creatorcontrib>Xiao Rong</creatorcontrib><creatorcontrib>Zhou, Mi</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Tian, Ma</creatorcontrib><creatorcontrib>Deng, Dawei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Lijian</au><au>Feng, Ziyan</au><au>Guo, Ruiqian</au><au>Tian, Qinyu</au><au>Wang, Weiwen</au><au>Xiao Rong</au><au>Zhou, Mi</au><au>Cheng, Chong</au><au>Tian, Ma</au><au>Deng, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The direct catalytic synthesis of ultrasmall Cu2O-coordinated carbon nitrides on ceria for multimodal antitumor therapy</atitle><jtitle>Materials horizons</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>10</volume><issue>4</issue><spage>1342</spage><epage>1353</epage><pages>1342-1353</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Engineering chem-/sono-/photo-multimodal antitumor therapies has become an efficient strategy to combat malignant tumors. However, the existence of hypoxia in the tumor microenvironment (TME) leads to limited sonodynamic or photodynamic efficiency because O2 is the key reactant during the process of generation of reactive oxygen species (ROS). Here, to design a desirable platform that can simultaneously convert H2O2 in the TME into ROS and O2 for efficient chem-/sono-/photo-multimodal tumor therapies, we have created ultrasmall Cu2O-coordinated carbon nitride on a biocompatible ceria substrate (denoted as Cu2O-CNx@CeO2) via a self-assisted catalytic growth strategy. The chemical and morphological structures, ROS and O2 generation activities, and chemo-/photo-/sono-dynamic specificities of Cu2O-CNx@CeO2 when serving as multifunctional biocatalytic agents were systematically disclosed. The experimental studies validated that Cu2O-CNx@CeO2 presents state-of-the-art peroxidase-like and catalase-like activities. Moreover, the light excitation and ultrasound irradiation were also demonstrated to boost ROS production. The in vitro and in vivo experiments suggest that Cu2O-CNx@CeO2 can efficiently inhibit the growth of malignant melanoma via chem-/sono-/photo-multimodal antitumor ability. We believe that applying these new biocatalysts with dual catalytic activities of producing ROS and O2 will offer a new path for engineering multimodal nanoagents to combat malignant tumors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2mh01540d</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2023-04, Vol.10 (4), p.1342-1353
issn 2051-6347
2051-6355
language eng
recordid cdi_proquest_miscellaneous_2771637109
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biocompatibility
Carbon
Carbon nitride
Catalase
Cerium oxides
Chemical synthesis
Copper oxides
Hydrogen peroxide
Hypoxia
Peroxidase
Substrates
Tumors
title The direct catalytic synthesis of ultrasmall Cu2O-coordinated carbon nitrides on ceria for multimodal antitumor therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20direct%20catalytic%20synthesis%20of%20ultrasmall%20Cu2O-coordinated%20carbon%20nitrides%20on%20ceria%20for%20multimodal%20antitumor%20therapy&rft.jtitle=Materials%20horizons&rft.au=Cao,%20Lijian&rft.date=2023-04-03&rft.volume=10&rft.issue=4&rft.spage=1342&rft.epage=1353&rft.pages=1342-1353&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d2mh01540d&rft_dat=%3Cproquest%3E2771637109%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793889932&rft_id=info:pmid/&rfr_iscdi=true