Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method

Predicting the whole process of a chemical reaction while solving kinetic equations presents an opportunity to realize an on-the-fly kinetic simulation that directly discovers chemical reactions with their product yields. Such a simulation avoids the combinatorial explosion of reaction patterns to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of physical chemistry 2023-04, Vol.74 (1), p.287-311
Hauptverfasser: Maeda, Satoshi, Harabuchi, Yu, Hayashi, Hiroki, Mita, Tsuyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 1
container_start_page 287
container_title Annual review of physical chemistry
container_volume 74
creator Maeda, Satoshi
Harabuchi, Yu
Hayashi, Hiroki
Mita, Tsuyoshi
description Predicting the whole process of a chemical reaction while solving kinetic equations presents an opportunity to realize an on-the-fly kinetic simulation that directly discovers chemical reactions with their product yields. Such a simulation avoids the combinatorial explosion of reaction patterns to be examined by narrowing the search space based on the kinetic analysis of the reaction path network, and would open a new paradigm beyond the conventional two-step approach, which requires a reaction path network prior to performing a kinetic simulation. The authors addressed this issue and developed a practical method by combining the artificial force induced reaction method with the rate constant matrix contraction method. Two algorithms are available for this purpose: a forward mode with reactants as the input and a backward mode with products as the input. This article first numerically verifies these modes for known reactions and then demonstrates their application to the actual reaction discovery. Finally, the challenges of this method and the prospects for ab initio reaction discovery are discussed.
doi_str_mv 10.1146/annurev-physchem-102822-101025
format Article
fullrecord <record><control><sourceid>proquest_annua</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771636441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771636441</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-b282fb352e8431e65e54b288c750e0287dd5e9f3f50d527bf0d2198c9ab166b33</originalsourceid><addsrcrecordid>eNqVkV1r2zAYhcVYWdKPvzAMhbIbr_q2fVMI2doFUgqlLb0TsvR6UXCsVLJb8u-n4rSF3u3qFeI55z3SQeiM4J-EcHmuu24I8JxvV7toVrDJCaYlpWmkg_iCpkRwkRNRsa9oirGUOafycYIOY1xjjCvG6Tc0YbIgVVXIKXq48y862GxWZ4vO9c5nt6BNml32y0XjnyHssvvour9Zv4JsFnrXOON0m136YCCJ7GDAfqiuoV95e4wOGt1GONnPI3R_-ftu_idf3lwt5rNlrgUr-rxO2ZuaCQolZwSkAMHTXWkKgSE9rLBWQNWwRmAraFE32FJSlabSNZGyZuwI_Rh9t8E_DRB7tUmpoW11B36IihYFkUxyThJ6-gld-yF0KZ2iJZZCEs5Foi5GygQfY4BGbYPb6LBTBKvXBtS-AfXWgBobUGMDyeD7fs1Qb8C-y9--PAHzEXg10m2ycvAS_3fNP96xnbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806561445</pqid></control><display><type>article</type><title>Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method</title><source>Annual Reviews</source><creator>Maeda, Satoshi ; Harabuchi, Yu ; Hayashi, Hiroki ; Mita, Tsuyoshi</creator><creatorcontrib>Maeda, Satoshi ; Harabuchi, Yu ; Hayashi, Hiroki ; Mita, Tsuyoshi</creatorcontrib><description>Predicting the whole process of a chemical reaction while solving kinetic equations presents an opportunity to realize an on-the-fly kinetic simulation that directly discovers chemical reactions with their product yields. Such a simulation avoids the combinatorial explosion of reaction patterns to be examined by narrowing the search space based on the kinetic analysis of the reaction path network, and would open a new paradigm beyond the conventional two-step approach, which requires a reaction path network prior to performing a kinetic simulation. The authors addressed this issue and developed a practical method by combining the artificial force induced reaction method with the rate constant matrix contraction method. Two algorithms are available for this purpose: a forward mode with reactants as the input and a backward mode with products as the input. This article first numerically verifies these modes for known reactions and then demonstrates their application to the actual reaction discovery. Finally, the challenges of this method and the prospects for ab initio reaction discovery are discussed.</description><identifier>ISSN: 0066-426X</identifier><identifier>EISSN: 1545-1593</identifier><identifier>DOI: 10.1146/annurev-physchem-102822-101025</identifier><identifier>PMID: 36719976</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Algorithms ; Chemical reactions ; Combinatorial analysis ; Kinetic equations ; kinetic simulation ; organic synthesis ; potential energy surface ; quantum chemical calculation ; reaction path network ; Simulation</subject><ispartof>Annual review of physical chemistry, 2023-04, Vol.74 (1), p.287-311</ispartof><rights>Copyright Annual Reviews, Inc. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-b282fb352e8431e65e54b288c750e0287dd5e9f3f50d527bf0d2198c9ab166b33</citedby><cites>FETCH-LOGICAL-a537t-b282fb352e8431e65e54b288c750e0287dd5e9f3f50d527bf0d2198c9ab166b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physchem-102822-101025?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physchem-102822-101025$$EHTML$$P50$$Gannualreviews$$Hfree_for_read</linktohtml><link.rule.ids>70,315,781,785,4183,27926,27927,78256,78257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36719976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Satoshi</creatorcontrib><creatorcontrib>Harabuchi, Yu</creatorcontrib><creatorcontrib>Hayashi, Hiroki</creatorcontrib><creatorcontrib>Mita, Tsuyoshi</creatorcontrib><title>Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method</title><title>Annual review of physical chemistry</title><addtitle>Annu Rev Phys Chem</addtitle><description>Predicting the whole process of a chemical reaction while solving kinetic equations presents an opportunity to realize an on-the-fly kinetic simulation that directly discovers chemical reactions with their product yields. Such a simulation avoids the combinatorial explosion of reaction patterns to be examined by narrowing the search space based on the kinetic analysis of the reaction path network, and would open a new paradigm beyond the conventional two-step approach, which requires a reaction path network prior to performing a kinetic simulation. The authors addressed this issue and developed a practical method by combining the artificial force induced reaction method with the rate constant matrix contraction method. Two algorithms are available for this purpose: a forward mode with reactants as the input and a backward mode with products as the input. This article first numerically verifies these modes for known reactions and then demonstrates their application to the actual reaction discovery. Finally, the challenges of this method and the prospects for ab initio reaction discovery are discussed.</description><subject>Algorithms</subject><subject>Chemical reactions</subject><subject>Combinatorial analysis</subject><subject>Kinetic equations</subject><subject>kinetic simulation</subject><subject>organic synthesis</subject><subject>potential energy surface</subject><subject>quantum chemical calculation</subject><subject>reaction path network</subject><subject>Simulation</subject><issn>0066-426X</issn><issn>1545-1593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVkV1r2zAYhcVYWdKPvzAMhbIbr_q2fVMI2doFUgqlLb0TsvR6UXCsVLJb8u-n4rSF3u3qFeI55z3SQeiM4J-EcHmuu24I8JxvV7toVrDJCaYlpWmkg_iCpkRwkRNRsa9oirGUOafycYIOY1xjjCvG6Tc0YbIgVVXIKXq48y862GxWZ4vO9c5nt6BNml32y0XjnyHssvvour9Zv4JsFnrXOON0m136YCCJ7GDAfqiuoV95e4wOGt1GONnPI3R_-ftu_idf3lwt5rNlrgUr-rxO2ZuaCQolZwSkAMHTXWkKgSE9rLBWQNWwRmAraFE32FJSlabSNZGyZuwI_Rh9t8E_DRB7tUmpoW11B36IihYFkUxyThJ6-gld-yF0KZ2iJZZCEs5Foi5GygQfY4BGbYPb6LBTBKvXBtS-AfXWgBobUGMDyeD7fs1Qb8C-y9--PAHzEXg10m2ycvAS_3fNP96xnbM</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Maeda, Satoshi</creator><creator>Harabuchi, Yu</creator><creator>Hayashi, Hiroki</creator><creator>Mita, Tsuyoshi</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>ZYWBE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20230424</creationdate><title>Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method</title><author>Maeda, Satoshi ; Harabuchi, Yu ; Hayashi, Hiroki ; Mita, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-b282fb352e8431e65e54b288c750e0287dd5e9f3f50d527bf0d2198c9ab166b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chemical reactions</topic><topic>Combinatorial analysis</topic><topic>Kinetic equations</topic><topic>kinetic simulation</topic><topic>organic synthesis</topic><topic>potential energy surface</topic><topic>quantum chemical calculation</topic><topic>reaction path network</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Satoshi</creatorcontrib><creatorcontrib>Harabuchi, Yu</creatorcontrib><creatorcontrib>Hayashi, Hiroki</creatorcontrib><creatorcontrib>Mita, Tsuyoshi</creatorcontrib><collection>Annual Reviews Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of physical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Satoshi</au><au>Harabuchi, Yu</au><au>Hayashi, Hiroki</au><au>Mita, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method</atitle><jtitle>Annual review of physical chemistry</jtitle><addtitle>Annu Rev Phys Chem</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>74</volume><issue>1</issue><spage>287</spage><epage>311</epage><pages>287-311</pages><issn>0066-426X</issn><eissn>1545-1593</eissn><abstract>Predicting the whole process of a chemical reaction while solving kinetic equations presents an opportunity to realize an on-the-fly kinetic simulation that directly discovers chemical reactions with their product yields. Such a simulation avoids the combinatorial explosion of reaction patterns to be examined by narrowing the search space based on the kinetic analysis of the reaction path network, and would open a new paradigm beyond the conventional two-step approach, which requires a reaction path network prior to performing a kinetic simulation. The authors addressed this issue and developed a practical method by combining the artificial force induced reaction method with the rate constant matrix contraction method. Two algorithms are available for this purpose: a forward mode with reactants as the input and a backward mode with products as the input. This article first numerically verifies these modes for known reactions and then demonstrates their application to the actual reaction discovery. Finally, the challenges of this method and the prospects for ab initio reaction discovery are discussed.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>36719976</pmid><doi>10.1146/annurev-physchem-102822-101025</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-426X
ispartof Annual review of physical chemistry, 2023-04, Vol.74 (1), p.287-311
issn 0066-426X
1545-1593
language eng
recordid cdi_proquest_miscellaneous_2771636441
source Annual Reviews
subjects Algorithms
Chemical reactions
Combinatorial analysis
Kinetic equations
kinetic simulation
organic synthesis
potential energy surface
quantum chemical calculation
reaction path network
Simulation
title Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_annua&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Ab%20Initio%20Reaction%20Discovery%20Using%20the%20Artificial%20Force%20Induced%20Reaction%20Method&rft.jtitle=Annual%20review%20of%20physical%20chemistry&rft.au=Maeda,%20Satoshi&rft.date=2023-04-24&rft.volume=74&rft.issue=1&rft.spage=287&rft.epage=311&rft.pages=287-311&rft.issn=0066-426X&rft.eissn=1545-1593&rft_id=info:doi/10.1146/annurev-physchem-102822-101025&rft_dat=%3Cproquest_annua%3E2771636441%3C/proquest_annua%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806561445&rft_id=info:pmid/36719976&rfr_iscdi=true