Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis
In silico machine learning applications for phenotype-based screening have primarily been limited due to the lack of machine-readable data related to disease phenotypes. Adiponectin, a nuclear receptor (NR)-regulated adipocytokine, is relatively downregulated in human metabolic diseases. Here, we pr...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2023-02, Vol.63 (3), p.856-869 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 3 |
container_start_page | 856 |
container_title | Journal of chemical information and modeling |
container_volume | 63 |
creator | An, Seungchan Hwang, Seok Young Gong, Junpyo Ahn, Sungjin Park, In Guk Oh, Soyeon Chin, Young-Won Noh, Minsoo |
description | In silico machine learning applications for phenotype-based screening have primarily been limited due to the lack of machine-readable data related to disease phenotypes. Adiponectin, a nuclear receptor (NR)-regulated adipocytokine, is relatively downregulated in human metabolic diseases. Here, we present a machine-learning model to predict the adiponectin-secretion-promoting activity of flavonoid-associated phytochemicals (FAPs). We modeled a structure–activity relationship between the chemical similarity of FAPs and their bioactivities using a random forest-based classifier, which provided the NR activity of each FAP as a probability. To link the classifier-predicted NR activity to the phenotype, we next designed a single-cell transcriptomics-based multiple linear regression model to generate the relative adiponectin score (RAS) of FAPs. In experimental validation, estimated RAS values of FAPs isolated from Scutellaria baicalensis exhibited a significant correlation with their adiponectin-secretion-promoting activity. The combined cheminformatics and bioinformatics approach enables the computational reconstruction of phenotype-based screening systems. |
doi_str_mv | 10.1021/acs.jcim.3c00033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771333805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771333805</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-f5f94260769ce5fae6366a79c4ab94f1f74f235261452293909324ec7c2920e73</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4Mobk7vnqTgxYOd-Wpijjo2FQbuoCB4CFmasIy2qU0r7L833YcHwVMS3uf3e8kDwCWCYwQxulM6jNfalWOiIYSEHIEhyqhIBYMfx4d7JtgAnIWw7gnB8CkYEMYRwxwNwefEl3XXqtb5ShXJojG50_0j8TZpVyZZrEzl203tdDK11ui2H8wK9e0r7_KQRPIhd7Wv4shVyaPzYVPFYHDhHJxYVQRzsT9H4H02fZs8p_PXp5fJwzxVWNA2tZkVFDPImdAms8owwpjiQlO1FNQiy6nFJMMM0QxjQQQUBFOjucYCQ8PJCNzseuvGf3UmtLJ0QZuiUJXxXZCYc0QIuYdZRK__oGvfNfHnW4phCAVEkYI7Sjc-hMZYWTeuVM1GIih78TKKl714uRcfI1f74m5Zmvw3cDAdgdsdsI0elv7b9wNxhI4Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776200901</pqid></control><display><type>article</type><title>Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis</title><source>ACS Publications</source><source>MEDLINE</source><creator>An, Seungchan ; Hwang, Seok Young ; Gong, Junpyo ; Ahn, Sungjin ; Park, In Guk ; Oh, Soyeon ; Chin, Young-Won ; Noh, Minsoo</creator><creatorcontrib>An, Seungchan ; Hwang, Seok Young ; Gong, Junpyo ; Ahn, Sungjin ; Park, In Guk ; Oh, Soyeon ; Chin, Young-Won ; Noh, Minsoo</creatorcontrib><description>In silico machine learning applications for phenotype-based screening have primarily been limited due to the lack of machine-readable data related to disease phenotypes. Adiponectin, a nuclear receptor (NR)-regulated adipocytokine, is relatively downregulated in human metabolic diseases. Here, we present a machine-learning model to predict the adiponectin-secretion-promoting activity of flavonoid-associated phytochemicals (FAPs). We modeled a structure–activity relationship between the chemical similarity of FAPs and their bioactivities using a random forest-based classifier, which provided the NR activity of each FAP as a probability. To link the classifier-predicted NR activity to the phenotype, we next designed a single-cell transcriptomics-based multiple linear regression model to generate the relative adiponectin score (RAS) of FAPs. In experimental validation, estimated RAS values of FAPs isolated from Scutellaria baicalensis exhibited a significant correlation with their adiponectin-secretion-promoting activity. The combined cheminformatics and bioinformatics approach enables the computational reconstruction of phenotype-based screening systems.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c00033</identifier><identifier>PMID: 36716271</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adiponectin ; Bioinformatics ; Biosynthesis ; Chemical activity ; Chemical fingerprinting ; Classifiers ; Flavonoids ; Flavonoids - pharmacology ; Humans ; Machine Learning ; Machine Learning and Deep Learning ; Metabolic disorders ; Phenotype ; Regression models ; Screening ; Statistical analysis ; Structure-Activity Relationship</subject><ispartof>Journal of chemical information and modeling, 2023-02, Vol.63 (3), p.856-869</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 13, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a294t-f5f94260769ce5fae6366a79c4ab94f1f74f235261452293909324ec7c2920e73</citedby><cites>FETCH-LOGICAL-a294t-f5f94260769ce5fae6366a79c4ab94f1f74f235261452293909324ec7c2920e73</cites><orcidid>0000-0002-0947-3598 ; 0000-0001-6964-1779 ; 0000-0002-5840-8987 ; 0000-0002-4020-5372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c00033$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c00033$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36716271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Seungchan</creatorcontrib><creatorcontrib>Hwang, Seok Young</creatorcontrib><creatorcontrib>Gong, Junpyo</creatorcontrib><creatorcontrib>Ahn, Sungjin</creatorcontrib><creatorcontrib>Park, In Guk</creatorcontrib><creatorcontrib>Oh, Soyeon</creatorcontrib><creatorcontrib>Chin, Young-Won</creatorcontrib><creatorcontrib>Noh, Minsoo</creatorcontrib><title>Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In silico machine learning applications for phenotype-based screening have primarily been limited due to the lack of machine-readable data related to disease phenotypes. Adiponectin, a nuclear receptor (NR)-regulated adipocytokine, is relatively downregulated in human metabolic diseases. Here, we present a machine-learning model to predict the adiponectin-secretion-promoting activity of flavonoid-associated phytochemicals (FAPs). We modeled a structure–activity relationship between the chemical similarity of FAPs and their bioactivities using a random forest-based classifier, which provided the NR activity of each FAP as a probability. To link the classifier-predicted NR activity to the phenotype, we next designed a single-cell transcriptomics-based multiple linear regression model to generate the relative adiponectin score (RAS) of FAPs. In experimental validation, estimated RAS values of FAPs isolated from Scutellaria baicalensis exhibited a significant correlation with their adiponectin-secretion-promoting activity. The combined cheminformatics and bioinformatics approach enables the computational reconstruction of phenotype-based screening systems.</description><subject>Adiponectin</subject><subject>Bioinformatics</subject><subject>Biosynthesis</subject><subject>Chemical activity</subject><subject>Chemical fingerprinting</subject><subject>Classifiers</subject><subject>Flavonoids</subject><subject>Flavonoids - pharmacology</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Metabolic disorders</subject><subject>Phenotype</subject><subject>Regression models</subject><subject>Screening</subject><subject>Statistical analysis</subject><subject>Structure-Activity Relationship</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LwzAYh4Mobk7vnqTgxYOd-Wpijjo2FQbuoCB4CFmasIy2qU0r7L833YcHwVMS3uf3e8kDwCWCYwQxulM6jNfalWOiIYSEHIEhyqhIBYMfx4d7JtgAnIWw7gnB8CkYEMYRwxwNwefEl3XXqtb5ShXJojG50_0j8TZpVyZZrEzl203tdDK11ui2H8wK9e0r7_KQRPIhd7Wv4shVyaPzYVPFYHDhHJxYVQRzsT9H4H02fZs8p_PXp5fJwzxVWNA2tZkVFDPImdAms8owwpjiQlO1FNQiy6nFJMMM0QxjQQQUBFOjucYCQ8PJCNzseuvGf3UmtLJ0QZuiUJXxXZCYc0QIuYdZRK__oGvfNfHnW4phCAVEkYI7Sjc-hMZYWTeuVM1GIih78TKKl714uRcfI1f74m5Zmvw3cDAdgdsdsI0elv7b9wNxhI4Z</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>An, Seungchan</creator><creator>Hwang, Seok Young</creator><creator>Gong, Junpyo</creator><creator>Ahn, Sungjin</creator><creator>Park, In Guk</creator><creator>Oh, Soyeon</creator><creator>Chin, Young-Won</creator><creator>Noh, Minsoo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0947-3598</orcidid><orcidid>https://orcid.org/0000-0001-6964-1779</orcidid><orcidid>https://orcid.org/0000-0002-5840-8987</orcidid><orcidid>https://orcid.org/0000-0002-4020-5372</orcidid></search><sort><creationdate>20230213</creationdate><title>Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis</title><author>An, Seungchan ; Hwang, Seok Young ; Gong, Junpyo ; Ahn, Sungjin ; Park, In Guk ; Oh, Soyeon ; Chin, Young-Won ; Noh, Minsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-f5f94260769ce5fae6366a79c4ab94f1f74f235261452293909324ec7c2920e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adiponectin</topic><topic>Bioinformatics</topic><topic>Biosynthesis</topic><topic>Chemical activity</topic><topic>Chemical fingerprinting</topic><topic>Classifiers</topic><topic>Flavonoids</topic><topic>Flavonoids - pharmacology</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Metabolic disorders</topic><topic>Phenotype</topic><topic>Regression models</topic><topic>Screening</topic><topic>Statistical analysis</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Seungchan</creatorcontrib><creatorcontrib>Hwang, Seok Young</creatorcontrib><creatorcontrib>Gong, Junpyo</creatorcontrib><creatorcontrib>Ahn, Sungjin</creatorcontrib><creatorcontrib>Park, In Guk</creatorcontrib><creatorcontrib>Oh, Soyeon</creatorcontrib><creatorcontrib>Chin, Young-Won</creatorcontrib><creatorcontrib>Noh, Minsoo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Seungchan</au><au>Hwang, Seok Young</au><au>Gong, Junpyo</au><au>Ahn, Sungjin</au><au>Park, In Guk</au><au>Oh, Soyeon</au><au>Chin, Young-Won</au><au>Noh, Minsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-02-13</date><risdate>2023</risdate><volume>63</volume><issue>3</issue><spage>856</spage><epage>869</epage><pages>856-869</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>In silico machine learning applications for phenotype-based screening have primarily been limited due to the lack of machine-readable data related to disease phenotypes. Adiponectin, a nuclear receptor (NR)-regulated adipocytokine, is relatively downregulated in human metabolic diseases. Here, we present a machine-learning model to predict the adiponectin-secretion-promoting activity of flavonoid-associated phytochemicals (FAPs). We modeled a structure–activity relationship between the chemical similarity of FAPs and their bioactivities using a random forest-based classifier, which provided the NR activity of each FAP as a probability. To link the classifier-predicted NR activity to the phenotype, we next designed a single-cell transcriptomics-based multiple linear regression model to generate the relative adiponectin score (RAS) of FAPs. In experimental validation, estimated RAS values of FAPs isolated from Scutellaria baicalensis exhibited a significant correlation with their adiponectin-secretion-promoting activity. The combined cheminformatics and bioinformatics approach enables the computational reconstruction of phenotype-based screening systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36716271</pmid><doi>10.1021/acs.jcim.3c00033</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0947-3598</orcidid><orcidid>https://orcid.org/0000-0001-6964-1779</orcidid><orcidid>https://orcid.org/0000-0002-5840-8987</orcidid><orcidid>https://orcid.org/0000-0002-4020-5372</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2023-02, Vol.63 (3), p.856-869 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2771333805 |
source | ACS Publications; MEDLINE |
subjects | Adiponectin Bioinformatics Biosynthesis Chemical activity Chemical fingerprinting Classifiers Flavonoids Flavonoids - pharmacology Humans Machine Learning Machine Learning and Deep Learning Metabolic disorders Phenotype Regression models Screening Statistical analysis Structure-Activity Relationship |
title | Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Prediction%20of%20the%20Phenotypic%20Effect%20of%20Flavonoids%20on%20Adiponectin%20Biosynthesis&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=An,%20Seungchan&rft.date=2023-02-13&rft.volume=63&rft.issue=3&rft.spage=856&rft.epage=869&rft.pages=856-869&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c00033&rft_dat=%3Cproquest_cross%3E2771333805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776200901&rft_id=info:pmid/36716271&rfr_iscdi=true |