Nupr1 deficiency downregulates HtrA1, enhances SMAD1 signaling, and suppresses age‐related bone loss in male mice

Nuclear protein 1 (NUPR1) is a stress‐induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11‐week‐old mice. Analysis of differentially expressed genes between wild‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2023-03, Vol.238 (3), p.566-581
Hauptverfasser: Murayama, Masatoshi, Hirata, Hirohito, Shiraki, Makoto, Iovanna, Juan L., Yamaza, Takayoshi, Kukita, Toshio, Komori, Toshihisa, Moriishi, Takeshi, Ueno, Masaya, Morimoto, Tadatsugu, Mawatari, Masaaki, Kukita, Akiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 581
container_issue 3
container_start_page 566
container_title Journal of cellular physiology
container_volume 238
creator Murayama, Masatoshi
Hirata, Hirohito
Shiraki, Makoto
Iovanna, Juan L.
Yamaza, Takayoshi
Kukita, Toshio
Komori, Toshihisa
Moriishi, Takeshi
Ueno, Masaya
Morimoto, Tadatsugu
Mawatari, Masaaki
Kukita, Akiko
description Nuclear protein 1 (NUPR1) is a stress‐induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11‐week‐old mice. Analysis of differentially expressed genes between wild‐type (WT) and Nupr1‐knockout (Nupr1‐KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor‐β signaling was markedly downregulated in Nupr1‐KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro‐cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age‐related diseases, we analyzed aging‐related bone loss in Nupr1‐KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6−19 months of age, whereas aging‐related trabecular bone loss was attenuated, especially in Nupr1‐KO male mice. Moreover, cellular senescence‐related markers were upregulated in the osteocytes of 6−19‐month‐old WT male mice but markedly downregulated in the osteocytes of 19‐month‐old Nupr1‐KO male mice. Oxidative stress‐induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro‐cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1‐mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age‐related bone loss.
doi_str_mv 10.1002/jcp.30949
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2771090372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771090372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4549-70d035c0af6673e611aa00a4d3ccef5c3aa431d0055a94bf418590291bbb3aa33</originalsourceid><addsrcrecordid>eNp1kU1u2zAQhYkiReOkXeQCAYFuEiCKhyIpmkvDbZIW6Q_Qdi1Q1MilIVEKacHwLkfoGXuS0LXbRYGsBoP3zQPmPULOGFwzgHy6ssM1By30CzJhoFUmCpkfkUnSWKalYMfkJMYVAGjN-StyzAvFZAFqQuLncQiM1tg469DbLa37jQ-4HFuzxkjv1mHOrij6n8bbtH_7NH_HaHRLb1rnl1fU-JrGcRgCxph0s8Tfj78C7q5rWvUeadvHSJ2nnWmRds7ia_KyMW3EN4d5Sn7cvP--uMvuv9x-WMzvMyuk0JmCGri0YJqiUBwLxowBMKLm1mIjLTdGcFYDSGm0qBrBZlJDrllVVUnj_JRc7H2H0D-MGNdl56LFtjUe-zGWuVIpLeAqT-jb_9BVP4b0446aqUKymZKJutxTNqSfAjblEFxnwrZkUO6aKFMT5Z8mEnt-cByrDut_5N_oEzDdAxvX4vZ5p_Lj4uve8gmNSJJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787651875</pqid></control><display><type>article</type><title>Nupr1 deficiency downregulates HtrA1, enhances SMAD1 signaling, and suppresses age‐related bone loss in male mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Murayama, Masatoshi ; Hirata, Hirohito ; Shiraki, Makoto ; Iovanna, Juan L. ; Yamaza, Takayoshi ; Kukita, Toshio ; Komori, Toshihisa ; Moriishi, Takeshi ; Ueno, Masaya ; Morimoto, Tadatsugu ; Mawatari, Masaaki ; Kukita, Akiko</creator><creatorcontrib>Murayama, Masatoshi ; Hirata, Hirohito ; Shiraki, Makoto ; Iovanna, Juan L. ; Yamaza, Takayoshi ; Kukita, Toshio ; Komori, Toshihisa ; Moriishi, Takeshi ; Ueno, Masaya ; Morimoto, Tadatsugu ; Mawatari, Masaaki ; Kukita, Akiko</creatorcontrib><description>Nuclear protein 1 (NUPR1) is a stress‐induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11‐week‐old mice. Analysis of differentially expressed genes between wild‐type (WT) and Nupr1‐knockout (Nupr1‐KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor‐β signaling was markedly downregulated in Nupr1‐KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro‐cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age‐related diseases, we analyzed aging‐related bone loss in Nupr1‐KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6−19 months of age, whereas aging‐related trabecular bone loss was attenuated, especially in Nupr1‐KO male mice. Moreover, cellular senescence‐related markers were upregulated in the osteocytes of 6−19‐month‐old WT male mice but markedly downregulated in the osteocytes of 19‐month‐old Nupr1‐KO male mice. Oxidative stress‐induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro‐cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1‐mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age‐related bone loss.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30949</identifier><identifier>PMID: 36715607</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Age ; age‐related bone loss ; Aging ; Animals ; Bone and Bones - metabolism ; Bone growth ; Bone loss ; Bones ; Cancellous bone ; cellular senescence ; Down-Regulation ; Female ; Growth factors ; High temperature ; High-Temperature Requirement A Serine Peptidase 1 - genetics ; High-Temperature Requirement A Serine Peptidase 1 - metabolism ; INK4a protein ; Male ; male mice ; Males ; Mice ; Mice, Knockout ; Osteoarthritis ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - metabolism ; Osteocytes ; Osteocytes - metabolism ; Osteogenesis ; Osteoporosis - metabolism ; Osteoporosis - prevention &amp; control ; Oxidative stress ; p16 Protein ; Proteins ; Senescence ; Serine proteinase ; Signal Transduction ; Signaling ; Smad1 Protein - metabolism ; Spine ; Temperature requirements ; TGF‐β signaling</subject><ispartof>Journal of cellular physiology, 2023-03, Vol.238 (3), p.566-581</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4549-70d035c0af6673e611aa00a4d3ccef5c3aa431d0055a94bf418590291bbb3aa33</citedby><cites>FETCH-LOGICAL-c4549-70d035c0af6673e611aa00a4d3ccef5c3aa431d0055a94bf418590291bbb3aa33</cites><orcidid>0000-0002-7516-104X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.30949$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.30949$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36715607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murayama, Masatoshi</creatorcontrib><creatorcontrib>Hirata, Hirohito</creatorcontrib><creatorcontrib>Shiraki, Makoto</creatorcontrib><creatorcontrib>Iovanna, Juan L.</creatorcontrib><creatorcontrib>Yamaza, Takayoshi</creatorcontrib><creatorcontrib>Kukita, Toshio</creatorcontrib><creatorcontrib>Komori, Toshihisa</creatorcontrib><creatorcontrib>Moriishi, Takeshi</creatorcontrib><creatorcontrib>Ueno, Masaya</creatorcontrib><creatorcontrib>Morimoto, Tadatsugu</creatorcontrib><creatorcontrib>Mawatari, Masaaki</creatorcontrib><creatorcontrib>Kukita, Akiko</creatorcontrib><title>Nupr1 deficiency downregulates HtrA1, enhances SMAD1 signaling, and suppresses age‐related bone loss in male mice</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Nuclear protein 1 (NUPR1) is a stress‐induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11‐week‐old mice. Analysis of differentially expressed genes between wild‐type (WT) and Nupr1‐knockout (Nupr1‐KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor‐β signaling was markedly downregulated in Nupr1‐KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro‐cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age‐related diseases, we analyzed aging‐related bone loss in Nupr1‐KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6−19 months of age, whereas aging‐related trabecular bone loss was attenuated, especially in Nupr1‐KO male mice. Moreover, cellular senescence‐related markers were upregulated in the osteocytes of 6−19‐month‐old WT male mice but markedly downregulated in the osteocytes of 19‐month‐old Nupr1‐KO male mice. Oxidative stress‐induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro‐cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1‐mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age‐related bone loss.</description><subject>Age</subject><subject>age‐related bone loss</subject><subject>Aging</subject><subject>Animals</subject><subject>Bone and Bones - metabolism</subject><subject>Bone growth</subject><subject>Bone loss</subject><subject>Bones</subject><subject>Cancellous bone</subject><subject>cellular senescence</subject><subject>Down-Regulation</subject><subject>Female</subject><subject>Growth factors</subject><subject>High temperature</subject><subject>High-Temperature Requirement A Serine Peptidase 1 - genetics</subject><subject>High-Temperature Requirement A Serine Peptidase 1 - metabolism</subject><subject>INK4a protein</subject><subject>Male</subject><subject>male mice</subject><subject>Males</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Osteoarthritis</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocytes</subject><subject>Osteocytes - metabolism</subject><subject>Osteogenesis</subject><subject>Osteoporosis - metabolism</subject><subject>Osteoporosis - prevention &amp; control</subject><subject>Oxidative stress</subject><subject>p16 Protein</subject><subject>Proteins</subject><subject>Senescence</subject><subject>Serine proteinase</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Smad1 Protein - metabolism</subject><subject>Spine</subject><subject>Temperature requirements</subject><subject>TGF‐β signaling</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1u2zAQhYkiReOkXeQCAYFuEiCKhyIpmkvDbZIW6Q_Qdi1Q1MilIVEKacHwLkfoGXuS0LXbRYGsBoP3zQPmPULOGFwzgHy6ssM1By30CzJhoFUmCpkfkUnSWKalYMfkJMYVAGjN-StyzAvFZAFqQuLncQiM1tg469DbLa37jQ-4HFuzxkjv1mHOrij6n8bbtH_7NH_HaHRLb1rnl1fU-JrGcRgCxph0s8Tfj78C7q5rWvUeadvHSJ2nnWmRds7ia_KyMW3EN4d5Sn7cvP--uMvuv9x-WMzvMyuk0JmCGri0YJqiUBwLxowBMKLm1mIjLTdGcFYDSGm0qBrBZlJDrllVVUnj_JRc7H2H0D-MGNdl56LFtjUe-zGWuVIpLeAqT-jb_9BVP4b0446aqUKymZKJutxTNqSfAjblEFxnwrZkUO6aKFMT5Z8mEnt-cByrDut_5N_oEzDdAxvX4vZ5p_Lj4uve8gmNSJJS</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Murayama, Masatoshi</creator><creator>Hirata, Hirohito</creator><creator>Shiraki, Makoto</creator><creator>Iovanna, Juan L.</creator><creator>Yamaza, Takayoshi</creator><creator>Kukita, Toshio</creator><creator>Komori, Toshihisa</creator><creator>Moriishi, Takeshi</creator><creator>Ueno, Masaya</creator><creator>Morimoto, Tadatsugu</creator><creator>Mawatari, Masaaki</creator><creator>Kukita, Akiko</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7516-104X</orcidid></search><sort><creationdate>202303</creationdate><title>Nupr1 deficiency downregulates HtrA1, enhances SMAD1 signaling, and suppresses age‐related bone loss in male mice</title><author>Murayama, Masatoshi ; Hirata, Hirohito ; Shiraki, Makoto ; Iovanna, Juan L. ; Yamaza, Takayoshi ; Kukita, Toshio ; Komori, Toshihisa ; Moriishi, Takeshi ; Ueno, Masaya ; Morimoto, Tadatsugu ; Mawatari, Masaaki ; Kukita, Akiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4549-70d035c0af6673e611aa00a4d3ccef5c3aa431d0055a94bf418590291bbb3aa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Age</topic><topic>age‐related bone loss</topic><topic>Aging</topic><topic>Animals</topic><topic>Bone and Bones - metabolism</topic><topic>Bone growth</topic><topic>Bone loss</topic><topic>Bones</topic><topic>Cancellous bone</topic><topic>cellular senescence</topic><topic>Down-Regulation</topic><topic>Female</topic><topic>Growth factors</topic><topic>High temperature</topic><topic>High-Temperature Requirement A Serine Peptidase 1 - genetics</topic><topic>High-Temperature Requirement A Serine Peptidase 1 - metabolism</topic><topic>INK4a protein</topic><topic>Male</topic><topic>male mice</topic><topic>Males</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Osteoarthritis</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocytes</topic><topic>Osteocytes - metabolism</topic><topic>Osteogenesis</topic><topic>Osteoporosis - metabolism</topic><topic>Osteoporosis - prevention &amp; control</topic><topic>Oxidative stress</topic><topic>p16 Protein</topic><topic>Proteins</topic><topic>Senescence</topic><topic>Serine proteinase</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Smad1 Protein - metabolism</topic><topic>Spine</topic><topic>Temperature requirements</topic><topic>TGF‐β signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murayama, Masatoshi</creatorcontrib><creatorcontrib>Hirata, Hirohito</creatorcontrib><creatorcontrib>Shiraki, Makoto</creatorcontrib><creatorcontrib>Iovanna, Juan L.</creatorcontrib><creatorcontrib>Yamaza, Takayoshi</creatorcontrib><creatorcontrib>Kukita, Toshio</creatorcontrib><creatorcontrib>Komori, Toshihisa</creatorcontrib><creatorcontrib>Moriishi, Takeshi</creatorcontrib><creatorcontrib>Ueno, Masaya</creatorcontrib><creatorcontrib>Morimoto, Tadatsugu</creatorcontrib><creatorcontrib>Mawatari, Masaaki</creatorcontrib><creatorcontrib>Kukita, Akiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murayama, Masatoshi</au><au>Hirata, Hirohito</au><au>Shiraki, Makoto</au><au>Iovanna, Juan L.</au><au>Yamaza, Takayoshi</au><au>Kukita, Toshio</au><au>Komori, Toshihisa</au><au>Moriishi, Takeshi</au><au>Ueno, Masaya</au><au>Morimoto, Tadatsugu</au><au>Mawatari, Masaaki</au><au>Kukita, Akiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nupr1 deficiency downregulates HtrA1, enhances SMAD1 signaling, and suppresses age‐related bone loss in male mice</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2023-03</date><risdate>2023</risdate><volume>238</volume><issue>3</issue><spage>566</spage><epage>581</epage><pages>566-581</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Nuclear protein 1 (NUPR1) is a stress‐induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11‐week‐old mice. Analysis of differentially expressed genes between wild‐type (WT) and Nupr1‐knockout (Nupr1‐KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor‐β signaling was markedly downregulated in Nupr1‐KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro‐cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age‐related diseases, we analyzed aging‐related bone loss in Nupr1‐KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6−19 months of age, whereas aging‐related trabecular bone loss was attenuated, especially in Nupr1‐KO male mice. Moreover, cellular senescence‐related markers were upregulated in the osteocytes of 6−19‐month‐old WT male mice but markedly downregulated in the osteocytes of 19‐month‐old Nupr1‐KO male mice. Oxidative stress‐induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro‐cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1‐mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age‐related bone loss.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36715607</pmid><doi>10.1002/jcp.30949</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7516-104X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2023-03, Vol.238 (3), p.566-581
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2771090372
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Age
age‐related bone loss
Aging
Animals
Bone and Bones - metabolism
Bone growth
Bone loss
Bones
Cancellous bone
cellular senescence
Down-Regulation
Female
Growth factors
High temperature
High-Temperature Requirement A Serine Peptidase 1 - genetics
High-Temperature Requirement A Serine Peptidase 1 - metabolism
INK4a protein
Male
male mice
Males
Mice
Mice, Knockout
Osteoarthritis
Osteoblastogenesis
Osteoblasts
Osteoblasts - metabolism
Osteocytes
Osteocytes - metabolism
Osteogenesis
Osteoporosis - metabolism
Osteoporosis - prevention & control
Oxidative stress
p16 Protein
Proteins
Senescence
Serine proteinase
Signal Transduction
Signaling
Smad1 Protein - metabolism
Spine
Temperature requirements
TGF‐β signaling
title Nupr1 deficiency downregulates HtrA1, enhances SMAD1 signaling, and suppresses age‐related bone loss in male mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nupr1%20deficiency%20downregulates%20HtrA1,%20enhances%20SMAD1%20signaling,%20and%20suppresses%20age%E2%80%90related%20bone%20loss%20in%20male%20mice&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Murayama,%20Masatoshi&rft.date=2023-03&rft.volume=238&rft.issue=3&rft.spage=566&rft.epage=581&rft.pages=566-581&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30949&rft_dat=%3Cproquest_cross%3E2771090372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787651875&rft_id=info:pmid/36715607&rfr_iscdi=true