Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data

Moisture availability is estimated in the 1.1 million km 2 Murray–Darling Basin (MDB) in southeast Australia. Remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) are combined with meteorological data to estimate the Normalised Difference Temperature Index (NDTI). The NDTI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2002-02, Vol.79 (2), p.199-212
Hauptverfasser: McVicar, Tim R, Jupp, David L.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 2
container_start_page 199
container_title Remote sensing of environment
container_volume 79
creator McVicar, Tim R
Jupp, David L.B
description Moisture availability is estimated in the 1.1 million km 2 Murray–Darling Basin (MDB) in southeast Australia. Remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) are combined with meteorological data to estimate the Normalised Difference Temperature Index (NDTI). The NDTI provides a measure of the moisture availability, the ratio of actual to potential evapotranspiration. Surface temperature minus air temperature, percent vegetation cover and net radiation explained 85% of variation in the modelled NDTI. Using these three covariates across the network of meteorological stations allows NDTI images, which maps changes in moisture availability across the MDB, to be calculated. This method uses a calculate then interpolate (CI) approach that uses the per-pixel variation present in the AVHRR data as the backbone for the spatial interpolation. Using the spatially dense AVHRR-based covariates in a CI approach avoids errors that occur between measurement points when interpolating variables for regional hydrologic modelling, most significantly the spatial pattern of rainfall. The NDTI provides a link into regional water balance modelling which does not require daily rainfall to be spatially interpolated. Assessing spatial and temporal interactions between the NDTI and the Normalised Difference Vegetation Index (NDVI) provides useful information about regional hydroecological processes, including agricultural management, within the context of Australia's highly variable climate and sparse network of meteorological stations.
doi_str_mv 10.1016/S0034-4257(01)00273-5
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27706971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425701002735</els_id><sourcerecordid>27706971</sourcerecordid><originalsourceid>FETCH-LOGICAL-e301t-a727b861e08991455a317098a0150713709699b32373d566bfa86485f5f3ddbf3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQQC1EJZbCJyD5AoJDYCaO44QLKm1pkYo4QM_WJJmAkTdebGelvSF-gT_kS0jaimtPM9I8PWn0hHiG8BoB6zdfAFRVVKU2LwFfAZRGFfqB2GBj2gIMVA_F5j_ySDxO6QcA6sbgRvy-Tm76Jvuwp-goc5I5yLSj7Mj7g3RT5rgLfrnIbXApz5El7cl56px3eSVk_s7y0xwjHf7--nNG0a_G97SI38oTOYU9ezknlmGUkbch8yJOPCUe5ECZnoijkXzip3fzWFx_OP96ellcfb74eHpyVbACzAWZ0nRNjQxN22KlNSk00Da0vAIG1bLXbdupUhk16LruRmrqqtGjHtUwdKM6Fi9uvbsYfs6cst261LP3NHGYky2NgbpdTPeB2GiDjaoW8PkdSKknP0aaepfsLrotxYNFVWGp1Cp8d8vx8t7ecbSpdzz1PLjIfbZDcBbBrjHtTUy7lrKA9iam1eofZl6UFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18571834</pqid></control><display><type>article</type><title>Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data</title><source>Elsevier ScienceDirect Journals</source><creator>McVicar, Tim R ; Jupp, David L.B</creator><creatorcontrib>McVicar, Tim R ; Jupp, David L.B</creatorcontrib><description>Moisture availability is estimated in the 1.1 million km 2 Murray–Darling Basin (MDB) in southeast Australia. Remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) are combined with meteorological data to estimate the Normalised Difference Temperature Index (NDTI). The NDTI provides a measure of the moisture availability, the ratio of actual to potential evapotranspiration. Surface temperature minus air temperature, percent vegetation cover and net radiation explained 85% of variation in the modelled NDTI. Using these three covariates across the network of meteorological stations allows NDTI images, which maps changes in moisture availability across the MDB, to be calculated. This method uses a calculate then interpolate (CI) approach that uses the per-pixel variation present in the AVHRR data as the backbone for the spatial interpolation. Using the spatially dense AVHRR-based covariates in a CI approach avoids errors that occur between measurement points when interpolating variables for regional hydrologic modelling, most significantly the spatial pattern of rainfall. The NDTI provides a link into regional water balance modelling which does not require daily rainfall to be spatially interpolated. Assessing spatial and temporal interactions between the NDTI and the Normalised Difference Vegetation Index (NDVI) provides useful information about regional hydroecological processes, including agricultural management, within the context of Australia's highly variable climate and sparse network of meteorological stations.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/S0034-4257(01)00273-5</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied geophysics ; Australia, Murray-Darling Basin ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Soils ; Surficial geology</subject><ispartof>Remote sensing of environment, 2002-02, Vol.79 (2), p.199-212</ispartof><rights>2001 Elsevier Science Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0034-4257(01)00273-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13412331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McVicar, Tim R</creatorcontrib><creatorcontrib>Jupp, David L.B</creatorcontrib><title>Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data</title><title>Remote sensing of environment</title><description>Moisture availability is estimated in the 1.1 million km 2 Murray–Darling Basin (MDB) in southeast Australia. Remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) are combined with meteorological data to estimate the Normalised Difference Temperature Index (NDTI). The NDTI provides a measure of the moisture availability, the ratio of actual to potential evapotranspiration. Surface temperature minus air temperature, percent vegetation cover and net radiation explained 85% of variation in the modelled NDTI. Using these three covariates across the network of meteorological stations allows NDTI images, which maps changes in moisture availability across the MDB, to be calculated. This method uses a calculate then interpolate (CI) approach that uses the per-pixel variation present in the AVHRR data as the backbone for the spatial interpolation. Using the spatially dense AVHRR-based covariates in a CI approach avoids errors that occur between measurement points when interpolating variables for regional hydrologic modelling, most significantly the spatial pattern of rainfall. The NDTI provides a link into regional water balance modelling which does not require daily rainfall to be spatially interpolated. Assessing spatial and temporal interactions between the NDTI and the Normalised Difference Vegetation Index (NDVI) provides useful information about regional hydroecological processes, including agricultural management, within the context of Australia's highly variable climate and sparse network of meteorological stations.</description><subject>Applied geophysics</subject><subject>Australia, Murray-Darling Basin</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Soils</subject><subject>Surficial geology</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQQC1EJZbCJyD5AoJDYCaO44QLKm1pkYo4QM_WJJmAkTdebGelvSF-gT_kS0jaimtPM9I8PWn0hHiG8BoB6zdfAFRVVKU2LwFfAZRGFfqB2GBj2gIMVA_F5j_ySDxO6QcA6sbgRvy-Tm76Jvuwp-goc5I5yLSj7Mj7g3RT5rgLfrnIbXApz5El7cl56px3eSVk_s7y0xwjHf7--nNG0a_G97SI38oTOYU9ezknlmGUkbch8yJOPCUe5ECZnoijkXzip3fzWFx_OP96ellcfb74eHpyVbACzAWZ0nRNjQxN22KlNSk00Da0vAIG1bLXbdupUhk16LruRmrqqtGjHtUwdKM6Fi9uvbsYfs6cst261LP3NHGYky2NgbpdTPeB2GiDjaoW8PkdSKknP0aaepfsLrotxYNFVWGp1Cp8d8vx8t7ecbSpdzz1PLjIfbZDcBbBrjHtTUy7lrKA9iam1eofZl6UFg</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>McVicar, Tim R</creator><creator>Jupp, David L.B</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20020201</creationdate><title>Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data</title><author>McVicar, Tim R ; Jupp, David L.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e301t-a727b861e08991455a317098a0150713709699b32373d566bfa86485f5f3ddbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied geophysics</topic><topic>Australia, Murray-Darling Basin</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Soils</topic><topic>Surficial geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McVicar, Tim R</creatorcontrib><creatorcontrib>Jupp, David L.B</creatorcontrib><collection>Pascal-Francis</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McVicar, Tim R</au><au>Jupp, David L.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data</atitle><jtitle>Remote sensing of environment</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>79</volume><issue>2</issue><spage>199</spage><epage>212</epage><pages>199-212</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>Moisture availability is estimated in the 1.1 million km 2 Murray–Darling Basin (MDB) in southeast Australia. Remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) are combined with meteorological data to estimate the Normalised Difference Temperature Index (NDTI). The NDTI provides a measure of the moisture availability, the ratio of actual to potential evapotranspiration. Surface temperature minus air temperature, percent vegetation cover and net radiation explained 85% of variation in the modelled NDTI. Using these three covariates across the network of meteorological stations allows NDTI images, which maps changes in moisture availability across the MDB, to be calculated. This method uses a calculate then interpolate (CI) approach that uses the per-pixel variation present in the AVHRR data as the backbone for the spatial interpolation. Using the spatially dense AVHRR-based covariates in a CI approach avoids errors that occur between measurement points when interpolating variables for regional hydrologic modelling, most significantly the spatial pattern of rainfall. The NDTI provides a link into regional water balance modelling which does not require daily rainfall to be spatially interpolated. Assessing spatial and temporal interactions between the NDTI and the Normalised Difference Vegetation Index (NDVI) provides useful information about regional hydroecological processes, including agricultural management, within the context of Australia's highly variable climate and sparse network of meteorological stations.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0034-4257(01)00273-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2002-02, Vol.79 (2), p.199-212
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_27706971
source Elsevier ScienceDirect Journals
subjects Applied geophysics
Australia, Murray-Darling Basin
Earth sciences
Earth, ocean, space
Exact sciences and technology
Internal geophysics
Soils
Surficial geology
title Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20covariates%20to%20spatially%20interpolate%20moisture%20availability%20in%20the%20Murray%E2%80%93Darling%20Basin:%20A%20novel%20use%20of%20remotely%20sensed%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=McVicar,%20Tim%20R&rft.date=2002-02-01&rft.volume=79&rft.issue=2&rft.spage=199&rft.epage=212&rft.pages=199-212&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/S0034-4257(01)00273-5&rft_dat=%3Cproquest_pasca%3E27706971%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18571834&rft_id=info:pmid/&rft_els_id=S0034425701002735&rfr_iscdi=true