Assessing eigenvalue sensitivities [power system control simulation]

The motivation for this paper is the fact that in practice, the parameters of a power system are only approximately known. The paper discusses the sensitivity of eigenvalues in terms of state matrix entry changes (model uncertainty) and parameter changes (parameter uncertainty). The concepts of asym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2000-02, Vol.15 (1), p.299-306
Hauptverfasser: Souza Lima, E.E., De Jesus Fernandes, L.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 1
container_start_page 299
container_title IEEE transactions on power systems
container_volume 15
creator Souza Lima, E.E.
De Jesus Fernandes, L.F.
description The motivation for this paper is the fact that in practice, the parameters of a power system are only approximately known. The paper discusses the sensitivity of eigenvalues in terms of state matrix entry changes (model uncertainty) and parameter changes (parameter uncertainty). The concepts of asymptotic stability robustness for model and parameter uncertainty are presented. Two indexes derived from eigenvalue sensitivity matrices are suggested to measure eigenvalue sensitivity and asymptotic small-signal stability robustness. As an example, the sensitivities of the electromechanical modes of a 9-machine system are analyzed. The results show lack of asymptotic stability robustness for both model and parameter uncertainties. The paper shows that lack of asymptotic stability robustness is a trend of actual multimachine power systems because too small stability margins and large eigenvalue sensitivities occur simultaneously.
doi_str_mv 10.1109/59.852136
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27702899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>852136</ieee_id><sourcerecordid>27702899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-355e3af666d9ecebf3dbb62e84977114521bb78528097ffcd004411dafdecda83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFYPXj0FD4KH1Nkkm-weS_2Eghc9iSybZFK2JNm6k1T6711p8eBhmMP7MPPyMHbJYcY5qDuhZlIkPM2P2IQLIWPIC3XMJiCliKUScMrOiNYAkIdgwu7nREhk-1WEdoX91rQjRoQ92cFuwyBFHxv3jT6iHQ3YRZXrB-_aiGw3tmawrv88ZyeNaQkvDnvK3h8f3hbP8fL16WUxX8ZVCtkQp0Jgapo8z2uFFZZNWpdlnqDMVFFwnoXeZVmE-hJU0TRVDZBlnNemqbGqjUyn7GZ_d-Pd14g06M5ShW1renQj6aQoIJFKBfD6H7h2o-9DNx08AIjwMEC3e6jyjshjozfedsbvNAf9K1MLpfcyA3u1Zy0i_nGH8AcUhHAH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885005977</pqid></control><display><type>article</type><title>Assessing eigenvalue sensitivities [power system control simulation]</title><source>IEEE Electronic Library (IEL)</source><creator>Souza Lima, E.E. ; De Jesus Fernandes, L.F.</creator><creatorcontrib>Souza Lima, E.E. ; De Jesus Fernandes, L.F.</creatorcontrib><description>The motivation for this paper is the fact that in practice, the parameters of a power system are only approximately known. The paper discusses the sensitivity of eigenvalues in terms of state matrix entry changes (model uncertainty) and parameter changes (parameter uncertainty). The concepts of asymptotic stability robustness for model and parameter uncertainty are presented. Two indexes derived from eigenvalue sensitivity matrices are suggested to measure eigenvalue sensitivity and asymptotic small-signal stability robustness. As an example, the sensitivities of the electromechanical modes of a 9-machine system are analyzed. The results show lack of asymptotic stability robustness for both model and parameter uncertainties. The paper shows that lack of asymptotic stability robustness is a trend of actual multimachine power systems because too small stability margins and large eigenvalue sensitivities occur simultaneously.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.852136</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Differential equations ; Eigenvalues and eigenfunctions ; Modal analysis ; Power system analysis computing ; Power system modeling ; Power system stability ; Robust stability ; Stability analysis ; Uncertain systems</subject><ispartof>IEEE transactions on power systems, 2000-02, Vol.15 (1), p.299-306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-355e3af666d9ecebf3dbb62e84977114521bb78528097ffcd004411dafdecda83</citedby><cites>FETCH-LOGICAL-c304t-355e3af666d9ecebf3dbb62e84977114521bb78528097ffcd004411dafdecda83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/852136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/852136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Souza Lima, E.E.</creatorcontrib><creatorcontrib>De Jesus Fernandes, L.F.</creatorcontrib><title>Assessing eigenvalue sensitivities [power system control simulation]</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The motivation for this paper is the fact that in practice, the parameters of a power system are only approximately known. The paper discusses the sensitivity of eigenvalues in terms of state matrix entry changes (model uncertainty) and parameter changes (parameter uncertainty). The concepts of asymptotic stability robustness for model and parameter uncertainty are presented. Two indexes derived from eigenvalue sensitivity matrices are suggested to measure eigenvalue sensitivity and asymptotic small-signal stability robustness. As an example, the sensitivities of the electromechanical modes of a 9-machine system are analyzed. The results show lack of asymptotic stability robustness for both model and parameter uncertainties. The paper shows that lack of asymptotic stability robustness is a trend of actual multimachine power systems because too small stability margins and large eigenvalue sensitivities occur simultaneously.</description><subject>Asymptotic stability</subject><subject>Differential equations</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Modal analysis</subject><subject>Power system analysis computing</subject><subject>Power system modeling</subject><subject>Power system stability</subject><subject>Robust stability</subject><subject>Stability analysis</subject><subject>Uncertain systems</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFYPXj0FD4KH1Nkkm-weS_2Eghc9iSybZFK2JNm6k1T6711p8eBhmMP7MPPyMHbJYcY5qDuhZlIkPM2P2IQLIWPIC3XMJiCliKUScMrOiNYAkIdgwu7nREhk-1WEdoX91rQjRoQ92cFuwyBFHxv3jT6iHQ3YRZXrB-_aiGw3tmawrv88ZyeNaQkvDnvK3h8f3hbP8fL16WUxX8ZVCtkQp0Jgapo8z2uFFZZNWpdlnqDMVFFwnoXeZVmE-hJU0TRVDZBlnNemqbGqjUyn7GZ_d-Pd14g06M5ShW1renQj6aQoIJFKBfD6H7h2o-9DNx08AIjwMEC3e6jyjshjozfedsbvNAf9K1MLpfcyA3u1Zy0i_nGH8AcUhHAH</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Souza Lima, E.E.</creator><creator>De Jesus Fernandes, L.F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20000201</creationdate><title>Assessing eigenvalue sensitivities [power system control simulation]</title><author>Souza Lima, E.E. ; De Jesus Fernandes, L.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-355e3af666d9ecebf3dbb62e84977114521bb78528097ffcd004411dafdecda83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Asymptotic stability</topic><topic>Differential equations</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Modal analysis</topic><topic>Power system analysis computing</topic><topic>Power system modeling</topic><topic>Power system stability</topic><topic>Robust stability</topic><topic>Stability analysis</topic><topic>Uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza Lima, E.E.</creatorcontrib><creatorcontrib>De Jesus Fernandes, L.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Souza Lima, E.E.</au><au>De Jesus Fernandes, L.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing eigenvalue sensitivities [power system control simulation]</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2000-02-01</date><risdate>2000</risdate><volume>15</volume><issue>1</issue><spage>299</spage><epage>306</epage><pages>299-306</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The motivation for this paper is the fact that in practice, the parameters of a power system are only approximately known. The paper discusses the sensitivity of eigenvalues in terms of state matrix entry changes (model uncertainty) and parameter changes (parameter uncertainty). The concepts of asymptotic stability robustness for model and parameter uncertainty are presented. Two indexes derived from eigenvalue sensitivity matrices are suggested to measure eigenvalue sensitivity and asymptotic small-signal stability robustness. As an example, the sensitivities of the electromechanical modes of a 9-machine system are analyzed. The results show lack of asymptotic stability robustness for both model and parameter uncertainties. The paper shows that lack of asymptotic stability robustness is a trend of actual multimachine power systems because too small stability margins and large eigenvalue sensitivities occur simultaneously.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/59.852136</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2000-02, Vol.15 (1), p.299-306
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_27702899
source IEEE Electronic Library (IEL)
subjects Asymptotic stability
Differential equations
Eigenvalues and eigenfunctions
Modal analysis
Power system analysis computing
Power system modeling
Power system stability
Robust stability
Stability analysis
Uncertain systems
title Assessing eigenvalue sensitivities [power system control simulation]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20eigenvalue%20sensitivities%20%5Bpower%20system%20control%20simulation%5D&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Souza%20Lima,%20E.E.&rft.date=2000-02-01&rft.volume=15&rft.issue=1&rft.spage=299&rft.epage=306&rft.pages=299-306&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.852136&rft_dat=%3Cproquest_RIE%3E27702899%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885005977&rft_id=info:pmid/&rft_ieee_id=852136&rfr_iscdi=true