Scanning tunneling microscopy and spectroscopy study on the submonolayer growth of Mn on Fe( [formula omitted])
The submonolayer growth of Mn on Fe(0 0 1) in the temperature range between 50 and 200 °C is studied by scanning tunneling microscopy and scanning tunneling spectroscopy. For growth temperatures above 100 °C, atomically resolved STM images with chemical contrast clearly reveal the incorporation of M...
Gespeichert in:
Veröffentlicht in: | Surface science 2002-03, Vol.501 (1), p.155-167 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Surface science |
container_volume | 501 |
creator | Bischoff, M.M.J Yamada, T Quinn, A.J van Kempen, H |
description | The submonolayer growth of Mn on Fe(0
0
1) in the temperature range between 50 and 200 °C is studied by scanning tunneling microscopy and scanning tunneling spectroscopy. For growth temperatures above 100 °C, atomically resolved STM images with chemical contrast clearly reveal the incorporation of Mn atoms in the Fe(0
0
1) substrate. The fraction of place exchanged Mn atoms is observed to increase with growth temperature. Although on islands a c(2×2) structure forms locally which is attributed to an ordered MnFe surface alloy, long range order could not be obtained for the growth temperatures and coverages studied. Spectroscopy results are presented for clean Fe(0
0
1), pure Mn ad-islands, single incorporated Mn atoms and c(2×2)-ordered MnFe areas. In contrast to embedded Cr atoms in the Fe(0
0
1) surface [Phys. Rev. Lett. 76 (1996) 4175], isolated embedded Mn atoms do not lead to double peak structures in d
I/d
V curves. Nevertheless, on the ordered c(2×2) MnFe structure and the pure Mn monoatomic islands surface states are detected as peaks in the d
I/d
V and (d
I/d
V)/(
I/
V) curves. However, due to the strong influence of a tip-dependent background on these peaks, the corresponding surface state energies cannot be found directly from those curves. The real surface state energies were recovered by normalizing the measured d
I/d
V curves by fitted quadratic backgrounds. Thus, surface state energies of about +0.35 and +0.25 eV are estimated for pure Mn islands and alloyed MnFe areas, respectively. |
doi_str_mv | 10.1016/S0039-6028(01)01946-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27701178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003960280101946X</els_id><sourcerecordid>27701178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fd4ddb00f43af6bf38a2209678e03ef4d101492f2374a85afb8142cc9cd829883</originalsourceid><addsrcrecordid>eNqFkF1LHDEUhkNR6PrxE4TctOjF2HztTOaqlEVbweKFLSyIhGxyoikzyTbJKPvvndnV9tJzk0N4zjm8D0InlJxTQusvt4TwtqoJk6eEnhHairpafkAzKpu2Ys1c7qHZP-QjOsj5DxlLtPMZirdGh-DDAy5DCNBNXe9NitnE9QbrYHFegylvH7kMdoNjwOURcB5WfQyx0xtI-CHF5_KIo8M_wwRcwim-czH1Q6dx7H0pYO_PjtC-012G49f3EP2-vPi1-FFd33y_Wny7rozgolTOCmtXhDjBtatXjkvNGGnrRgLh4IQdg4uWOcYboeVcu5WkghnTGitZKyU_RJ93e9cp_h0gF9X7bKDrdIA4ZMWahlDaTOB8B06ZcwKn1sn3Om0UJWrSq7Z61eROEaq2etVynPv0ekBnozuXdDA-_x_mNeWSTPu_7jgY0z55SCobD8GA9Wn0qmz071x6ARK-kMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27701178</pqid></control><display><type>article</type><title>Scanning tunneling microscopy and spectroscopy study on the submonolayer growth of Mn on Fe( [formula omitted])</title><source>Elsevier ScienceDirect Journals</source><creator>Bischoff, M.M.J ; Yamada, T ; Quinn, A.J ; van Kempen, H</creator><creatorcontrib>Bischoff, M.M.J ; Yamada, T ; Quinn, A.J ; van Kempen, H</creatorcontrib><description>The submonolayer growth of Mn on Fe(0
0
1) in the temperature range between 50 and 200 °C is studied by scanning tunneling microscopy and scanning tunneling spectroscopy. For growth temperatures above 100 °C, atomically resolved STM images with chemical contrast clearly reveal the incorporation of Mn atoms in the Fe(0
0
1) substrate. The fraction of place exchanged Mn atoms is observed to increase with growth temperature. Although on islands a c(2×2) structure forms locally which is attributed to an ordered MnFe surface alloy, long range order could not be obtained for the growth temperatures and coverages studied. Spectroscopy results are presented for clean Fe(0
0
1), pure Mn ad-islands, single incorporated Mn atoms and c(2×2)-ordered MnFe areas. In contrast to embedded Cr atoms in the Fe(0
0
1) surface [Phys. Rev. Lett. 76 (1996) 4175], isolated embedded Mn atoms do not lead to double peak structures in d
I/d
V curves. Nevertheless, on the ordered c(2×2) MnFe structure and the pure Mn monoatomic islands surface states are detected as peaks in the d
I/d
V and (d
I/d
V)/(
I/
V) curves. However, due to the strong influence of a tip-dependent background on these peaks, the corresponding surface state energies cannot be found directly from those curves. The real surface state energies were recovered by normalizing the measured d
I/d
V curves by fitted quadratic backgrounds. Thus, surface state energies of about +0.35 and +0.25 eV are estimated for pure Mn islands and alloyed MnFe areas, respectively.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/S0039-6028(01)01946-X</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Diffusion; interface formation ; Epitaxy ; Exact sciences and technology ; Iron ; Manganese ; Physics ; Scanning tunneling microscopy ; Scanning tunneling spectroscopies ; Solid surfaces and solid-solid interfaces ; Surface electronic phenomena (work function, surface potential, surface states, etc.) ; Surface structure, morphology, roughness, and topography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Whiskers</subject><ispartof>Surface science, 2002-03, Vol.501 (1), p.155-167</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fd4ddb00f43af6bf38a2209678e03ef4d101492f2374a85afb8142cc9cd829883</citedby><cites>FETCH-LOGICAL-c434t-fd4ddb00f43af6bf38a2209678e03ef4d101492f2374a85afb8142cc9cd829883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003960280101946X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13613808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bischoff, M.M.J</creatorcontrib><creatorcontrib>Yamada, T</creatorcontrib><creatorcontrib>Quinn, A.J</creatorcontrib><creatorcontrib>van Kempen, H</creatorcontrib><title>Scanning tunneling microscopy and spectroscopy study on the submonolayer growth of Mn on Fe( [formula omitted])</title><title>Surface science</title><description>The submonolayer growth of Mn on Fe(0
0
1) in the temperature range between 50 and 200 °C is studied by scanning tunneling microscopy and scanning tunneling spectroscopy. For growth temperatures above 100 °C, atomically resolved STM images with chemical contrast clearly reveal the incorporation of Mn atoms in the Fe(0
0
1) substrate. The fraction of place exchanged Mn atoms is observed to increase with growth temperature. Although on islands a c(2×2) structure forms locally which is attributed to an ordered MnFe surface alloy, long range order could not be obtained for the growth temperatures and coverages studied. Spectroscopy results are presented for clean Fe(0
0
1), pure Mn ad-islands, single incorporated Mn atoms and c(2×2)-ordered MnFe areas. In contrast to embedded Cr atoms in the Fe(0
0
1) surface [Phys. Rev. Lett. 76 (1996) 4175], isolated embedded Mn atoms do not lead to double peak structures in d
I/d
V curves. Nevertheless, on the ordered c(2×2) MnFe structure and the pure Mn monoatomic islands surface states are detected as peaks in the d
I/d
V and (d
I/d
V)/(
I/
V) curves. However, due to the strong influence of a tip-dependent background on these peaks, the corresponding surface state energies cannot be found directly from those curves. The real surface state energies were recovered by normalizing the measured d
I/d
V curves by fitted quadratic backgrounds. Thus, surface state energies of about +0.35 and +0.25 eV are estimated for pure Mn islands and alloyed MnFe areas, respectively.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion; interface formation</subject><subject>Epitaxy</subject><subject>Exact sciences and technology</subject><subject>Iron</subject><subject>Manganese</subject><subject>Physics</subject><subject>Scanning tunneling microscopy</subject><subject>Scanning tunneling spectroscopies</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surface electronic phenomena (work function, surface potential, surface states, etc.)</subject><subject>Surface structure, morphology, roughness, and topography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Whiskers</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LHDEUhkNR6PrxE4TctOjF2HztTOaqlEVbweKFLSyIhGxyoikzyTbJKPvvndnV9tJzk0N4zjm8D0InlJxTQusvt4TwtqoJk6eEnhHairpafkAzKpu2Ys1c7qHZP-QjOsj5DxlLtPMZirdGh-DDAy5DCNBNXe9NitnE9QbrYHFegylvH7kMdoNjwOURcB5WfQyx0xtI-CHF5_KIo8M_wwRcwim-czH1Q6dx7H0pYO_PjtC-012G49f3EP2-vPi1-FFd33y_Wny7rozgolTOCmtXhDjBtatXjkvNGGnrRgLh4IQdg4uWOcYboeVcu5WkghnTGitZKyU_RJ93e9cp_h0gF9X7bKDrdIA4ZMWahlDaTOB8B06ZcwKn1sn3Om0UJWrSq7Z61eROEaq2etVynPv0ekBnozuXdDA-_x_mNeWSTPu_7jgY0z55SCobD8GA9Wn0qmz071x6ARK-kMs</recordid><startdate>20020320</startdate><enddate>20020320</enddate><creator>Bischoff, M.M.J</creator><creator>Yamada, T</creator><creator>Quinn, A.J</creator><creator>van Kempen, H</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020320</creationdate><title>Scanning tunneling microscopy and spectroscopy study on the submonolayer growth of Mn on Fe( [formula omitted])</title><author>Bischoff, M.M.J ; Yamada, T ; Quinn, A.J ; van Kempen, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fd4ddb00f43af6bf38a2209678e03ef4d101492f2374a85afb8142cc9cd829883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion; interface formation</topic><topic>Epitaxy</topic><topic>Exact sciences and technology</topic><topic>Iron</topic><topic>Manganese</topic><topic>Physics</topic><topic>Scanning tunneling microscopy</topic><topic>Scanning tunneling spectroscopies</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surface electronic phenomena (work function, surface potential, surface states, etc.)</topic><topic>Surface structure, morphology, roughness, and topography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Whiskers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bischoff, M.M.J</creatorcontrib><creatorcontrib>Yamada, T</creatorcontrib><creatorcontrib>Quinn, A.J</creatorcontrib><creatorcontrib>van Kempen, H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bischoff, M.M.J</au><au>Yamada, T</au><au>Quinn, A.J</au><au>van Kempen, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanning tunneling microscopy and spectroscopy study on the submonolayer growth of Mn on Fe( [formula omitted])</atitle><jtitle>Surface science</jtitle><date>2002-03-20</date><risdate>2002</risdate><volume>501</volume><issue>1</issue><spage>155</spage><epage>167</epage><pages>155-167</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The submonolayer growth of Mn on Fe(0
0
1) in the temperature range between 50 and 200 °C is studied by scanning tunneling microscopy and scanning tunneling spectroscopy. For growth temperatures above 100 °C, atomically resolved STM images with chemical contrast clearly reveal the incorporation of Mn atoms in the Fe(0
0
1) substrate. The fraction of place exchanged Mn atoms is observed to increase with growth temperature. Although on islands a c(2×2) structure forms locally which is attributed to an ordered MnFe surface alloy, long range order could not be obtained for the growth temperatures and coverages studied. Spectroscopy results are presented for clean Fe(0
0
1), pure Mn ad-islands, single incorporated Mn atoms and c(2×2)-ordered MnFe areas. In contrast to embedded Cr atoms in the Fe(0
0
1) surface [Phys. Rev. Lett. 76 (1996) 4175], isolated embedded Mn atoms do not lead to double peak structures in d
I/d
V curves. Nevertheless, on the ordered c(2×2) MnFe structure and the pure Mn monoatomic islands surface states are detected as peaks in the d
I/d
V and (d
I/d
V)/(
I/
V) curves. However, due to the strong influence of a tip-dependent background on these peaks, the corresponding surface state energies cannot be found directly from those curves. The real surface state energies were recovered by normalizing the measured d
I/d
V curves by fitted quadratic backgrounds. Thus, surface state energies of about +0.35 and +0.25 eV are estimated for pure Mn islands and alloyed MnFe areas, respectively.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0039-6028(01)01946-X</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2002-03, Vol.501 (1), p.155-167 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_27701178 |
source | Elsevier ScienceDirect Journals |
subjects | Condensed matter: structure, mechanical and thermal properties Diffusion interface formation Epitaxy Exact sciences and technology Iron Manganese Physics Scanning tunneling microscopy Scanning tunneling spectroscopies Solid surfaces and solid-solid interfaces Surface electronic phenomena (work function, surface potential, surface states, etc.) Surface structure, morphology, roughness, and topography Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Whiskers |
title | Scanning tunneling microscopy and spectroscopy study on the submonolayer growth of Mn on Fe( [formula omitted]) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanning%20tunneling%20microscopy%20and%20spectroscopy%20study%20on%20the%20submonolayer%20growth%20of%20Mn%20on%20Fe(%20%5Bformula%20omitted%5D)&rft.jtitle=Surface%20science&rft.au=Bischoff,%20M.M.J&rft.date=2002-03-20&rft.volume=501&rft.issue=1&rft.spage=155&rft.epage=167&rft.pages=155-167&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/S0039-6028(01)01946-X&rft_dat=%3Cproquest_cross%3E27701178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27701178&rft_id=info:pmid/&rft_els_id=S003960280101946X&rfr_iscdi=true |