Artificial neural network modeling of atmospheric corrosion in the MICAT project

This paper presents an Artificial Neural Network(ANN)-based solution methodology for modeling atmospheric corrosion processes from observed experimental values, and an ANN model developed using the cited methodology for the prediction of the corrosion rate of carbon steel in the context of the Ibero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2000, Vol.42 (1), p.35-52
Hauptverfasser: Pintos, Salvador, Queipo, Nestor V., Troconis de Rincón, Oladis, Rincón, Alvaro, Morcillo, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 35
container_title Corrosion science
container_volume 42
creator Pintos, Salvador
Queipo, Nestor V.
Troconis de Rincón, Oladis
Rincón, Alvaro
Morcillo, Manuel
description This paper presents an Artificial Neural Network(ANN)-based solution methodology for modeling atmospheric corrosion processes from observed experimental values, and an ANN model developed using the cited methodology for the prediction of the corrosion rate of carbon steel in the context of the Iberoamerican Corrosion Map (MICAT) Project, which includes seventy-two test sites in fourteen countries throughout Iberoamerica. The ANN model exhibited superior performance in terms of goodness of fit (sum of square errors) and residual distributions when compared against a classical regression model also developed in the context of this study, and is expected to provide reasonable corrosion rates for a variety of climatological and pollution conditions. Furthermore, the proposed methodology holds promise to be an effective and efficient tool for the construction of analytical models associated with corrosion processes of other metals in the context of the MICAT project, and, in general, in the modeling of corrosion phenomena from experimental data.
doi_str_mv 10.1016/S0010-938X(99)00054-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27700082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X99000542</els_id><sourcerecordid>27700082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-bc86475764b5ba8e646a423007571816cdc1f57e856d10d5e753c6b31755eb133</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKc_QciFiF5Uk7ZJkyuR4RdMFJzgXUjTU5fZNTPpFP-96Tb0Uq8OHJ73vJwHoUNKziih_PyJEEoSmYmXEylPCSEsT9ItNKCikAnJJd9Ggx9kF-2FMItQGjcD9HjpO1tbY3WDW1j61eg-nX_Dc1dBY9tX7Gqsu7kLiyl4a7Bx3rtgXYtti7sp4Pu70eUEL7ybgen20U6tmwAHmzlEz9dXk9FtMn64idw4MZkUXVIawfOCFTwvWakF8JzrPM0IiTsqKDeVoTUrQDBeUVIxKFhmeJnRgjEoaZYN0fH6bux9X0Lo1NwGA02jW3DLoNKiiE-K9B8gF5KzHmRr0MT3godaLbyda_-lKFG9aLUSrXqLSkq1Eq363NGmQAejm9rr1tjwG06zNCcyYhdrDKKVDwteBWOhNVBZH72pytk_ir4BLyaRLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27689652</pqid></control><display><type>article</type><title>Artificial neural network modeling of atmospheric corrosion in the MICAT project</title><source>Access via ScienceDirect (Elsevier)</source><creator>Pintos, Salvador ; Queipo, Nestor V. ; Troconis de Rincón, Oladis ; Rincón, Alvaro ; Morcillo, Manuel</creator><creatorcontrib>Pintos, Salvador ; Queipo, Nestor V. ; Troconis de Rincón, Oladis ; Rincón, Alvaro ; Morcillo, Manuel</creatorcontrib><description>This paper presents an Artificial Neural Network(ANN)-based solution methodology for modeling atmospheric corrosion processes from observed experimental values, and an ANN model developed using the cited methodology for the prediction of the corrosion rate of carbon steel in the context of the Iberoamerican Corrosion Map (MICAT) Project, which includes seventy-two test sites in fourteen countries throughout Iberoamerica. The ANN model exhibited superior performance in terms of goodness of fit (sum of square errors) and residual distributions when compared against a classical regression model also developed in the context of this study, and is expected to provide reasonable corrosion rates for a variety of climatological and pollution conditions. Furthermore, the proposed methodology holds promise to be an effective and efficient tool for the construction of analytical models associated with corrosion processes of other metals in the context of the MICAT project, and, in general, in the modeling of corrosion phenomena from experimental data.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/S0010-938X(99)00054-2</identifier><identifier>CODEN: CRRSAA</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Steel ; Applied sciences ; B. Modeling studies ; C. Atmospheric corrosion ; Corrosion ; Corrosion mechanisms ; Exact sciences and technology ; Metals. Metallurgy</subject><ispartof>Corrosion science, 2000, Vol.42 (1), p.35-52</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-bc86475764b5ba8e646a423007571816cdc1f57e856d10d5e753c6b31755eb133</citedby><cites>FETCH-LOGICAL-c398t-bc86475764b5ba8e646a423007571816cdc1f57e856d10d5e753c6b31755eb133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0010-938X(99)00054-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1232409$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pintos, Salvador</creatorcontrib><creatorcontrib>Queipo, Nestor V.</creatorcontrib><creatorcontrib>Troconis de Rincón, Oladis</creatorcontrib><creatorcontrib>Rincón, Alvaro</creatorcontrib><creatorcontrib>Morcillo, Manuel</creatorcontrib><title>Artificial neural network modeling of atmospheric corrosion in the MICAT project</title><title>Corrosion science</title><description>This paper presents an Artificial Neural Network(ANN)-based solution methodology for modeling atmospheric corrosion processes from observed experimental values, and an ANN model developed using the cited methodology for the prediction of the corrosion rate of carbon steel in the context of the Iberoamerican Corrosion Map (MICAT) Project, which includes seventy-two test sites in fourteen countries throughout Iberoamerica. The ANN model exhibited superior performance in terms of goodness of fit (sum of square errors) and residual distributions when compared against a classical regression model also developed in the context of this study, and is expected to provide reasonable corrosion rates for a variety of climatological and pollution conditions. Furthermore, the proposed methodology holds promise to be an effective and efficient tool for the construction of analytical models associated with corrosion processes of other metals in the context of the MICAT project, and, in general, in the modeling of corrosion phenomena from experimental data.</description><subject>A. Steel</subject><subject>Applied sciences</subject><subject>B. Modeling studies</subject><subject>C. Atmospheric corrosion</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Exact sciences and technology</subject><subject>Metals. Metallurgy</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMoOKc_QciFiF5Uk7ZJkyuR4RdMFJzgXUjTU5fZNTPpFP-96Tb0Uq8OHJ73vJwHoUNKziih_PyJEEoSmYmXEylPCSEsT9ItNKCikAnJJd9Ggx9kF-2FMItQGjcD9HjpO1tbY3WDW1j61eg-nX_Dc1dBY9tX7Gqsu7kLiyl4a7Bx3rtgXYtti7sp4Pu70eUEL7ybgen20U6tmwAHmzlEz9dXk9FtMn64idw4MZkUXVIawfOCFTwvWakF8JzrPM0IiTsqKDeVoTUrQDBeUVIxKFhmeJnRgjEoaZYN0fH6bux9X0Lo1NwGA02jW3DLoNKiiE-K9B8gF5KzHmRr0MT3godaLbyda_-lKFG9aLUSrXqLSkq1Eq363NGmQAejm9rr1tjwG06zNCcyYhdrDKKVDwteBWOhNVBZH72pytk_ir4BLyaRLg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Pintos, Salvador</creator><creator>Queipo, Nestor V.</creator><creator>Troconis de Rincón, Oladis</creator><creator>Rincón, Alvaro</creator><creator>Morcillo, Manuel</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>F28</scope></search><sort><creationdate>2000</creationdate><title>Artificial neural network modeling of atmospheric corrosion in the MICAT project</title><author>Pintos, Salvador ; Queipo, Nestor V. ; Troconis de Rincón, Oladis ; Rincón, Alvaro ; Morcillo, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-bc86475764b5ba8e646a423007571816cdc1f57e856d10d5e753c6b31755eb133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>A. Steel</topic><topic>Applied sciences</topic><topic>B. Modeling studies</topic><topic>C. Atmospheric corrosion</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Exact sciences and technology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pintos, Salvador</creatorcontrib><creatorcontrib>Queipo, Nestor V.</creatorcontrib><creatorcontrib>Troconis de Rincón, Oladis</creatorcontrib><creatorcontrib>Rincón, Alvaro</creatorcontrib><creatorcontrib>Morcillo, Manuel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pintos, Salvador</au><au>Queipo, Nestor V.</au><au>Troconis de Rincón, Oladis</au><au>Rincón, Alvaro</au><au>Morcillo, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network modeling of atmospheric corrosion in the MICAT project</atitle><jtitle>Corrosion science</jtitle><date>2000</date><risdate>2000</risdate><volume>42</volume><issue>1</issue><spage>35</spage><epage>52</epage><pages>35-52</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><coden>CRRSAA</coden><abstract>This paper presents an Artificial Neural Network(ANN)-based solution methodology for modeling atmospheric corrosion processes from observed experimental values, and an ANN model developed using the cited methodology for the prediction of the corrosion rate of carbon steel in the context of the Iberoamerican Corrosion Map (MICAT) Project, which includes seventy-two test sites in fourteen countries throughout Iberoamerica. The ANN model exhibited superior performance in terms of goodness of fit (sum of square errors) and residual distributions when compared against a classical regression model also developed in the context of this study, and is expected to provide reasonable corrosion rates for a variety of climatological and pollution conditions. Furthermore, the proposed methodology holds promise to be an effective and efficient tool for the construction of analytical models associated with corrosion processes of other metals in the context of the MICAT project, and, in general, in the modeling of corrosion phenomena from experimental data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0010-938X(99)00054-2</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2000, Vol.42 (1), p.35-52
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_miscellaneous_27700082
source Access via ScienceDirect (Elsevier)
subjects A. Steel
Applied sciences
B. Modeling studies
C. Atmospheric corrosion
Corrosion
Corrosion mechanisms
Exact sciences and technology
Metals. Metallurgy
title Artificial neural network modeling of atmospheric corrosion in the MICAT project
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20modeling%20of%20atmospheric%20corrosion%20in%20the%20MICAT%20project&rft.jtitle=Corrosion%20science&rft.au=Pintos,%20Salvador&rft.date=2000&rft.volume=42&rft.issue=1&rft.spage=35&rft.epage=52&rft.pages=35-52&rft.issn=0010-938X&rft.eissn=1879-0496&rft.coden=CRRSAA&rft_id=info:doi/10.1016/S0010-938X(99)00054-2&rft_dat=%3Cproquest_cross%3E27700082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27689652&rft_id=info:pmid/&rft_els_id=S0010938X99000542&rfr_iscdi=true