Effective Toluene Ozonation over δ‑MnO2: Oxygen Vacancy-Induced Reactive Oxygen Species

To improve the reactivity and lifetime of catalysts in the catalytic ozonation of toluene, a simple strategy was provided to regulate the morphology and microstructure of δ-MnO2 via the hydrothermal reaction temperature. The effects of the reaction temperature and the ozone to toluene concentration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-02, Vol.57 (7), p.2918-2927
Hauptverfasser: Lu, Yuqin, Deng, Hua, Pan, Tingting, Liao, Xu, Zhang, Changbin, He, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2927
container_issue 7
container_start_page 2918
container_title Environmental science & technology
container_volume 57
creator Lu, Yuqin
Deng, Hua
Pan, Tingting
Liao, Xu
Zhang, Changbin
He, Hong
description To improve the reactivity and lifetime of catalysts in the catalytic ozonation of toluene, a simple strategy was provided to regulate the morphology and microstructure of δ-MnO2 via the hydrothermal reaction temperature. The effects of the reaction temperature and the ozone to toluene concentration ratio on the catalyst performance were investigated. The optimized MnO2-260 catalyst prepared at the limiting hydrothermal temperature (260 °C) showed high catalytic activity (X Tol = 95%) and excellent stability (1200 min) at the approximately ambient temperature of 40 °C, which was superior to the results in previous studies. The structure and morphology of δ-MnO2 were characterized by extended X-ray absorption fine structure, X-ray diffraction, scanning electron microscopy, positron annihilation lifetime spectroscopy, electron spin resonance, and other techniques. Experimental results and density functional theory calculations were in agreement that surface oxygen vacancy clusters, especially surface oxygen dimer vacancies, are critical in ozone activation. Oxygen vacancies can facilitate the adsorption and activation of O3 to generate reactive oxygen species (ROS, including 1O2, O2 –, and •OH), leading to superior ozonation activity to degrade toluene and intermediates. Meanwhile, free radical detection and scavenger tests indicated that •OH is the primary ROS during toluene ozonation rather than 1O2 or O2 –.
doi_str_mv 10.1021/acs.est.2c07661
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2769376054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779157905</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-7d13c67be0fa911996c05c7fd2def9198b3e8ce980e971af1ae1a9f6561338893</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMoWKtnrwteBNmaSUyy8SalaqGyoFXEy5JmJ7JlzdZmt1hPvoLv4nP4ED6JW1oQPA3MfP_P8BFyCLQHlMGpsaGHoe4xS5WUsEU6IBiNRSJgm3QoBR5rLh93yV4IU0op4zTpkKeBc2jrYoHRuCob9Bil75U3dVH5qFrgPPr--vn4vPEpO4_St-Uz-ujBWOPtMh76vLGYR7do1g2b-90MbYFhn-w4UwY82Mwuub8cjPvX8Si9GvYvRrFhgtWxyoFbqSZIndEAWktLhVUuZzk6DTqZcEws6oSiVmAcGASjnRQSOE8SzbvkeN07m1evTasgeymCxbI0HqsmZExJzZWk4qxFj_6h06qZ-_a7llIahNJUtNTJmmqV_gFAs5XnbLVcJTee-S_lgHMC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779157905</pqid></control><display><type>article</type><title>Effective Toluene Ozonation over δ‑MnO2: Oxygen Vacancy-Induced Reactive Oxygen Species</title><source>American Chemical Society Journals</source><creator>Lu, Yuqin ; Deng, Hua ; Pan, Tingting ; Liao, Xu ; Zhang, Changbin ; He, Hong</creator><creatorcontrib>Lu, Yuqin ; Deng, Hua ; Pan, Tingting ; Liao, Xu ; Zhang, Changbin ; He, Hong</creatorcontrib><description>To improve the reactivity and lifetime of catalysts in the catalytic ozonation of toluene, a simple strategy was provided to regulate the morphology and microstructure of δ-MnO2 via the hydrothermal reaction temperature. The effects of the reaction temperature and the ozone to toluene concentration ratio on the catalyst performance were investigated. The optimized MnO2-260 catalyst prepared at the limiting hydrothermal temperature (260 °C) showed high catalytic activity (X Tol = 95%) and excellent stability (1200 min) at the approximately ambient temperature of 40 °C, which was superior to the results in previous studies. The structure and morphology of δ-MnO2 were characterized by extended X-ray absorption fine structure, X-ray diffraction, scanning electron microscopy, positron annihilation lifetime spectroscopy, electron spin resonance, and other techniques. Experimental results and density functional theory calculations were in agreement that surface oxygen vacancy clusters, especially surface oxygen dimer vacancies, are critical in ozone activation. Oxygen vacancies can facilitate the adsorption and activation of O3 to generate reactive oxygen species (ROS, including 1O2, O2 –, and •OH), leading to superior ozonation activity to degrade toluene and intermediates. Meanwhile, free radical detection and scavenger tests indicated that •OH is the primary ROS during toluene ozonation rather than 1O2 or O2 –.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c07661</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Ambient temperature ; Catalysts ; Catalytic activity ; Density functional theory ; Electron paramagnetic resonance ; Electron spin ; Electron spin resonance ; Fine structure ; Free radicals ; Hydrothermal reactions ; Intermediates ; Manganese dioxide ; Morphology ; Oxygen ; Ozonation ; Ozone ; Positron annihilation ; Reactive oxygen species ; Scanning electron microscopy ; Spectroscopy ; Spin resonance ; Toluene ; Treatment and Resource Recovery ; Ultrastructure ; X ray absorption ; X-ray diffraction</subject><ispartof>Environmental science &amp; technology, 2023-02, Vol.57 (7), p.2918-2927</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 21, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8476-8217 ; 0000-0003-2124-0620 ; 0000-0002-5258-906X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c07661$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c07661$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Lu, Yuqin</creatorcontrib><creatorcontrib>Deng, Hua</creatorcontrib><creatorcontrib>Pan, Tingting</creatorcontrib><creatorcontrib>Liao, Xu</creatorcontrib><creatorcontrib>Zhang, Changbin</creatorcontrib><creatorcontrib>He, Hong</creatorcontrib><title>Effective Toluene Ozonation over δ‑MnO2: Oxygen Vacancy-Induced Reactive Oxygen Species</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>To improve the reactivity and lifetime of catalysts in the catalytic ozonation of toluene, a simple strategy was provided to regulate the morphology and microstructure of δ-MnO2 via the hydrothermal reaction temperature. The effects of the reaction temperature and the ozone to toluene concentration ratio on the catalyst performance were investigated. The optimized MnO2-260 catalyst prepared at the limiting hydrothermal temperature (260 °C) showed high catalytic activity (X Tol = 95%) and excellent stability (1200 min) at the approximately ambient temperature of 40 °C, which was superior to the results in previous studies. The structure and morphology of δ-MnO2 were characterized by extended X-ray absorption fine structure, X-ray diffraction, scanning electron microscopy, positron annihilation lifetime spectroscopy, electron spin resonance, and other techniques. Experimental results and density functional theory calculations were in agreement that surface oxygen vacancy clusters, especially surface oxygen dimer vacancies, are critical in ozone activation. Oxygen vacancies can facilitate the adsorption and activation of O3 to generate reactive oxygen species (ROS, including 1O2, O2 –, and •OH), leading to superior ozonation activity to degrade toluene and intermediates. Meanwhile, free radical detection and scavenger tests indicated that •OH is the primary ROS during toluene ozonation rather than 1O2 or O2 –.</description><subject>Ambient temperature</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Density functional theory</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron spin resonance</subject><subject>Fine structure</subject><subject>Free radicals</subject><subject>Hydrothermal reactions</subject><subject>Intermediates</subject><subject>Manganese dioxide</subject><subject>Morphology</subject><subject>Oxygen</subject><subject>Ozonation</subject><subject>Ozone</subject><subject>Positron annihilation</subject><subject>Reactive oxygen species</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Spin resonance</subject><subject>Toluene</subject><subject>Treatment and Resource Recovery</subject><subject>Ultrastructure</subject><subject>X ray absorption</subject><subject>X-ray diffraction</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEQhoMoWKtnrwteBNmaSUyy8SalaqGyoFXEy5JmJ7JlzdZmt1hPvoLv4nP4ED6JW1oQPA3MfP_P8BFyCLQHlMGpsaGHoe4xS5WUsEU6IBiNRSJgm3QoBR5rLh93yV4IU0op4zTpkKeBc2jrYoHRuCob9Bil75U3dVH5qFrgPPr--vn4vPEpO4_St-Uz-ujBWOPtMh76vLGYR7do1g2b-90MbYFhn-w4UwY82Mwuub8cjPvX8Si9GvYvRrFhgtWxyoFbqSZIndEAWktLhVUuZzk6DTqZcEws6oSiVmAcGASjnRQSOE8SzbvkeN07m1evTasgeymCxbI0HqsmZExJzZWk4qxFj_6h06qZ-_a7llIahNJUtNTJmmqV_gFAs5XnbLVcJTee-S_lgHMC</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Lu, Yuqin</creator><creator>Deng, Hua</creator><creator>Pan, Tingting</creator><creator>Liao, Xu</creator><creator>Zhang, Changbin</creator><creator>He, Hong</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8476-8217</orcidid><orcidid>https://orcid.org/0000-0003-2124-0620</orcidid><orcidid>https://orcid.org/0000-0002-5258-906X</orcidid></search><sort><creationdate>20230221</creationdate><title>Effective Toluene Ozonation over δ‑MnO2: Oxygen Vacancy-Induced Reactive Oxygen Species</title><author>Lu, Yuqin ; Deng, Hua ; Pan, Tingting ; Liao, Xu ; Zhang, Changbin ; He, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-7d13c67be0fa911996c05c7fd2def9198b3e8ce980e971af1ae1a9f6561338893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ambient temperature</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Density functional theory</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron spin resonance</topic><topic>Fine structure</topic><topic>Free radicals</topic><topic>Hydrothermal reactions</topic><topic>Intermediates</topic><topic>Manganese dioxide</topic><topic>Morphology</topic><topic>Oxygen</topic><topic>Ozonation</topic><topic>Ozone</topic><topic>Positron annihilation</topic><topic>Reactive oxygen species</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Spin resonance</topic><topic>Toluene</topic><topic>Treatment and Resource Recovery</topic><topic>Ultrastructure</topic><topic>X ray absorption</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yuqin</creatorcontrib><creatorcontrib>Deng, Hua</creatorcontrib><creatorcontrib>Pan, Tingting</creatorcontrib><creatorcontrib>Liao, Xu</creatorcontrib><creatorcontrib>Zhang, Changbin</creatorcontrib><creatorcontrib>He, Hong</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yuqin</au><au>Deng, Hua</au><au>Pan, Tingting</au><au>Liao, Xu</au><au>Zhang, Changbin</au><au>He, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Toluene Ozonation over δ‑MnO2: Oxygen Vacancy-Induced Reactive Oxygen Species</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-02-21</date><risdate>2023</risdate><volume>57</volume><issue>7</issue><spage>2918</spage><epage>2927</epage><pages>2918-2927</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>To improve the reactivity and lifetime of catalysts in the catalytic ozonation of toluene, a simple strategy was provided to regulate the morphology and microstructure of δ-MnO2 via the hydrothermal reaction temperature. The effects of the reaction temperature and the ozone to toluene concentration ratio on the catalyst performance were investigated. The optimized MnO2-260 catalyst prepared at the limiting hydrothermal temperature (260 °C) showed high catalytic activity (X Tol = 95%) and excellent stability (1200 min) at the approximately ambient temperature of 40 °C, which was superior to the results in previous studies. The structure and morphology of δ-MnO2 were characterized by extended X-ray absorption fine structure, X-ray diffraction, scanning electron microscopy, positron annihilation lifetime spectroscopy, electron spin resonance, and other techniques. Experimental results and density functional theory calculations were in agreement that surface oxygen vacancy clusters, especially surface oxygen dimer vacancies, are critical in ozone activation. Oxygen vacancies can facilitate the adsorption and activation of O3 to generate reactive oxygen species (ROS, including 1O2, O2 –, and •OH), leading to superior ozonation activity to degrade toluene and intermediates. Meanwhile, free radical detection and scavenger tests indicated that •OH is the primary ROS during toluene ozonation rather than 1O2 or O2 –.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.2c07661</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8476-8217</orcidid><orcidid>https://orcid.org/0000-0003-2124-0620</orcidid><orcidid>https://orcid.org/0000-0002-5258-906X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-02, Vol.57 (7), p.2918-2927
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2769376054
source American Chemical Society Journals
subjects Ambient temperature
Catalysts
Catalytic activity
Density functional theory
Electron paramagnetic resonance
Electron spin
Electron spin resonance
Fine structure
Free radicals
Hydrothermal reactions
Intermediates
Manganese dioxide
Morphology
Oxygen
Ozonation
Ozone
Positron annihilation
Reactive oxygen species
Scanning electron microscopy
Spectroscopy
Spin resonance
Toluene
Treatment and Resource Recovery
Ultrastructure
X ray absorption
X-ray diffraction
title Effective Toluene Ozonation over δ‑MnO2: Oxygen Vacancy-Induced Reactive Oxygen Species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Toluene%20Ozonation%20over%20%CE%B4%E2%80%91MnO2:%20Oxygen%20Vacancy-Induced%20Reactive%20Oxygen%20Species&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Lu,%20Yuqin&rft.date=2023-02-21&rft.volume=57&rft.issue=7&rft.spage=2918&rft.epage=2927&rft.pages=2918-2927&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c07661&rft_dat=%3Cproquest_acs_j%3E2779157905%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779157905&rft_id=info:pmid/&rfr_iscdi=true