The additional nitrogen atom breaks the uranyl structure: a combined photoelectron spectroscopy and theoretical study of NUO2

We report a joint photoelectron spectroscopic and relativistic quantum chemistry study on gaseous NUO2−. The electron affinity (EA) of the neutral NUO2 molecule is reported for the first time with a value of 2.602(28) eV. The U–O and U–N stretching vibrational modes for the ground state and the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-02, Vol.25 (6), p.4794-4802
Hauptverfasser: Hong, Jing, Han, Changcai, Zejie Fei, Tang, Yuanyuan, Liu, Yancheng, Hong-Guang Xu, Wang, Mingqing, Liu, Hongtao, Xiao-Gen Xiong, Dong, Changwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4802
container_issue 6
container_start_page 4794
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Hong, Jing
Han, Changcai
Zejie Fei
Tang, Yuanyuan
Liu, Yancheng
Hong-Guang Xu
Wang, Mingqing
Liu, Hongtao
Xiao-Gen Xiong
Dong, Changwu
description We report a joint photoelectron spectroscopic and relativistic quantum chemistry study on gaseous NUO2−. The electron affinity (EA) of the neutral NUO2 molecule is reported for the first time with a value of 2.602(28) eV. The U–O and U–N stretching vibrational modes for the ground state and the first excited state are observed for NUO2. The geometric and electronic structures of both the anions and the corresponding neutrals are investigated by relativistic quantum chemistry calculations to interpret the photoelectron spectra and to provide insights into the nature of the chemical bonding. Both the ground state of the anion and neutral are calculated to be planar structures with C2v symmetry. Unlike the “T”-shape structure of UO3 which has a quasi-linear O–U–O angle, both the ground-state geometries of the anion and neutral have O–U–O bond angles of around 90°. The significant contraction of the O–U–O bond angle indicates the strong interaction between the U and N atoms compared with the “additional” oxygen in UO3. The chemical bonding calculation indicates that multiple bonding of U(vi) can occur in NUO2− and NUO2, and the UVI–N bond is significantly more covalent than the U–O bond. The current experimental and theoretical results reveal the difference between the U–N and U–O bond in the unified molecular system, and expand our understanding of the bonding capacities of actinide elements with the nitrogen atom.
doi_str_mv 10.1039/d2cp05544a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2769375319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769375319</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-9c1b7593d100de9c867752239efce3948d66d51cdfb8b0565a36a9d729d76cf53</originalsourceid><addsrcrecordid>eNpdkD1PwzAYhC0EEqWw8AsssbAE7Di2YzZU8SVVdGnnyrHf0JTUDv4YOvDfSQExMJzuhuduOIQuKbmhhKlbW5qBcF5V-ghNaCVYoUhdHf9lKU7RWYxbQgjllE3Q53IDWFvbpc473WPXpeDfwGGd_A43AfR7xGlkctBu3-OYQjYpB7jDGhu_azoHFg8bnzz0YMayw3H4DtH4YY-1s4e-D5A6ow8D2e6xb_HralGeo5NW9xEufn2KVo8Py9lzMV88vczu58VQUpEKZWgjuWKWEmJBmVpIycuSKWgNMFXVVgjLqbFtUzeEC66Z0MrKcpQwLWdTdP2zOwT_kSGm9a6LBvpeO_A5rkspFJOcUTWiV__Qrc9hvOZAyYpyVSvOvgBRlm-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774159895</pqid></control><display><type>article</type><title>The additional nitrogen atom breaks the uranyl structure: a combined photoelectron spectroscopy and theoretical study of NUO2</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hong, Jing ; Han, Changcai ; Zejie Fei ; Tang, Yuanyuan ; Liu, Yancheng ; Hong-Guang Xu ; Wang, Mingqing ; Liu, Hongtao ; Xiao-Gen Xiong ; Dong, Changwu</creator><creatorcontrib>Hong, Jing ; Han, Changcai ; Zejie Fei ; Tang, Yuanyuan ; Liu, Yancheng ; Hong-Guang Xu ; Wang, Mingqing ; Liu, Hongtao ; Xiao-Gen Xiong ; Dong, Changwu</creatorcontrib><description>We report a joint photoelectron spectroscopic and relativistic quantum chemistry study on gaseous NUO2−. The electron affinity (EA) of the neutral NUO2 molecule is reported for the first time with a value of 2.602(28) eV. The U–O and U–N stretching vibrational modes for the ground state and the first excited state are observed for NUO2. The geometric and electronic structures of both the anions and the corresponding neutrals are investigated by relativistic quantum chemistry calculations to interpret the photoelectron spectra and to provide insights into the nature of the chemical bonding. Both the ground state of the anion and neutral are calculated to be planar structures with C2v symmetry. Unlike the “T”-shape structure of UO3 which has a quasi-linear O–U–O angle, both the ground-state geometries of the anion and neutral have O–U–O bond angles of around 90°. The significant contraction of the O–U–O bond angle indicates the strong interaction between the U and N atoms compared with the “additional” oxygen in UO3. The chemical bonding calculation indicates that multiple bonding of U(vi) can occur in NUO2− and NUO2, and the UVI–N bond is significantly more covalent than the U–O bond. The current experimental and theoretical results reveal the difference between the U–N and U–O bond in the unified molecular system, and expand our understanding of the bonding capacities of actinide elements with the nitrogen atom.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp05544a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Angles (geometry) ; Anions ; Chemical bonds ; Electron affinity ; Ground state ; Mathematical analysis ; Nitrogen ; Photoelectrons ; Planar structures ; Quantum chemistry ; Relativistic effects ; Strong interactions (field theory) ; Vibration mode</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (6), p.4794-4802</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hong, Jing</creatorcontrib><creatorcontrib>Han, Changcai</creatorcontrib><creatorcontrib>Zejie Fei</creatorcontrib><creatorcontrib>Tang, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Yancheng</creatorcontrib><creatorcontrib>Hong-Guang Xu</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Liu, Hongtao</creatorcontrib><creatorcontrib>Xiao-Gen Xiong</creatorcontrib><creatorcontrib>Dong, Changwu</creatorcontrib><title>The additional nitrogen atom breaks the uranyl structure: a combined photoelectron spectroscopy and theoretical study of NUO2</title><title>Physical chemistry chemical physics : PCCP</title><description>We report a joint photoelectron spectroscopic and relativistic quantum chemistry study on gaseous NUO2−. The electron affinity (EA) of the neutral NUO2 molecule is reported for the first time with a value of 2.602(28) eV. The U–O and U–N stretching vibrational modes for the ground state and the first excited state are observed for NUO2. The geometric and electronic structures of both the anions and the corresponding neutrals are investigated by relativistic quantum chemistry calculations to interpret the photoelectron spectra and to provide insights into the nature of the chemical bonding. Both the ground state of the anion and neutral are calculated to be planar structures with C2v symmetry. Unlike the “T”-shape structure of UO3 which has a quasi-linear O–U–O angle, both the ground-state geometries of the anion and neutral have O–U–O bond angles of around 90°. The significant contraction of the O–U–O bond angle indicates the strong interaction between the U and N atoms compared with the “additional” oxygen in UO3. The chemical bonding calculation indicates that multiple bonding of U(vi) can occur in NUO2− and NUO2, and the UVI–N bond is significantly more covalent than the U–O bond. The current experimental and theoretical results reveal the difference between the U–N and U–O bond in the unified molecular system, and expand our understanding of the bonding capacities of actinide elements with the nitrogen atom.</description><subject>Angles (geometry)</subject><subject>Anions</subject><subject>Chemical bonds</subject><subject>Electron affinity</subject><subject>Ground state</subject><subject>Mathematical analysis</subject><subject>Nitrogen</subject><subject>Photoelectrons</subject><subject>Planar structures</subject><subject>Quantum chemistry</subject><subject>Relativistic effects</subject><subject>Strong interactions (field theory)</subject><subject>Vibration mode</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAYhC0EEqWw8AsssbAE7Di2YzZU8SVVdGnnyrHf0JTUDv4YOvDfSQExMJzuhuduOIQuKbmhhKlbW5qBcF5V-ghNaCVYoUhdHf9lKU7RWYxbQgjllE3Q53IDWFvbpc473WPXpeDfwGGd_A43AfR7xGlkctBu3-OYQjYpB7jDGhu_azoHFg8bnzz0YMayw3H4DtH4YY-1s4e-D5A6ow8D2e6xb_HralGeo5NW9xEufn2KVo8Py9lzMV88vczu58VQUpEKZWgjuWKWEmJBmVpIycuSKWgNMFXVVgjLqbFtUzeEC66Z0MrKcpQwLWdTdP2zOwT_kSGm9a6LBvpeO_A5rkspFJOcUTWiV__Qrc9hvOZAyYpyVSvOvgBRlm-4</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Hong, Jing</creator><creator>Han, Changcai</creator><creator>Zejie Fei</creator><creator>Tang, Yuanyuan</creator><creator>Liu, Yancheng</creator><creator>Hong-Guang Xu</creator><creator>Wang, Mingqing</creator><creator>Liu, Hongtao</creator><creator>Xiao-Gen Xiong</creator><creator>Dong, Changwu</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230208</creationdate><title>The additional nitrogen atom breaks the uranyl structure: a combined photoelectron spectroscopy and theoretical study of NUO2</title><author>Hong, Jing ; Han, Changcai ; Zejie Fei ; Tang, Yuanyuan ; Liu, Yancheng ; Hong-Guang Xu ; Wang, Mingqing ; Liu, Hongtao ; Xiao-Gen Xiong ; Dong, Changwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-9c1b7593d100de9c867752239efce3948d66d51cdfb8b0565a36a9d729d76cf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angles (geometry)</topic><topic>Anions</topic><topic>Chemical bonds</topic><topic>Electron affinity</topic><topic>Ground state</topic><topic>Mathematical analysis</topic><topic>Nitrogen</topic><topic>Photoelectrons</topic><topic>Planar structures</topic><topic>Quantum chemistry</topic><topic>Relativistic effects</topic><topic>Strong interactions (field theory)</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Jing</creatorcontrib><creatorcontrib>Han, Changcai</creatorcontrib><creatorcontrib>Zejie Fei</creatorcontrib><creatorcontrib>Tang, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Yancheng</creatorcontrib><creatorcontrib>Hong-Guang Xu</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Liu, Hongtao</creatorcontrib><creatorcontrib>Xiao-Gen Xiong</creatorcontrib><creatorcontrib>Dong, Changwu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Jing</au><au>Han, Changcai</au><au>Zejie Fei</au><au>Tang, Yuanyuan</au><au>Liu, Yancheng</au><au>Hong-Guang Xu</au><au>Wang, Mingqing</au><au>Liu, Hongtao</au><au>Xiao-Gen Xiong</au><au>Dong, Changwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The additional nitrogen atom breaks the uranyl structure: a combined photoelectron spectroscopy and theoretical study of NUO2</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-02-08</date><risdate>2023</risdate><volume>25</volume><issue>6</issue><spage>4794</spage><epage>4802</epage><pages>4794-4802</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We report a joint photoelectron spectroscopic and relativistic quantum chemistry study on gaseous NUO2−. The electron affinity (EA) of the neutral NUO2 molecule is reported for the first time with a value of 2.602(28) eV. The U–O and U–N stretching vibrational modes for the ground state and the first excited state are observed for NUO2. The geometric and electronic structures of both the anions and the corresponding neutrals are investigated by relativistic quantum chemistry calculations to interpret the photoelectron spectra and to provide insights into the nature of the chemical bonding. Both the ground state of the anion and neutral are calculated to be planar structures with C2v symmetry. Unlike the “T”-shape structure of UO3 which has a quasi-linear O–U–O angle, both the ground-state geometries of the anion and neutral have O–U–O bond angles of around 90°. The significant contraction of the O–U–O bond angle indicates the strong interaction between the U and N atoms compared with the “additional” oxygen in UO3. The chemical bonding calculation indicates that multiple bonding of U(vi) can occur in NUO2− and NUO2, and the UVI–N bond is significantly more covalent than the U–O bond. The current experimental and theoretical results reveal the difference between the U–N and U–O bond in the unified molecular system, and expand our understanding of the bonding capacities of actinide elements with the nitrogen atom.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp05544a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (6), p.4794-4802
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2769375319
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Angles (geometry)
Anions
Chemical bonds
Electron affinity
Ground state
Mathematical analysis
Nitrogen
Photoelectrons
Planar structures
Quantum chemistry
Relativistic effects
Strong interactions (field theory)
Vibration mode
title The additional nitrogen atom breaks the uranyl structure: a combined photoelectron spectroscopy and theoretical study of NUO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20additional%20nitrogen%20atom%20breaks%20the%20uranyl%20structure:%20a%20combined%20photoelectron%20spectroscopy%20and%20theoretical%20study%20of%20NUO2&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Hong,%20Jing&rft.date=2023-02-08&rft.volume=25&rft.issue=6&rft.spage=4794&rft.epage=4802&rft.pages=4794-4802&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp05544a&rft_dat=%3Cproquest%3E2769375319%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774159895&rft_id=info:pmid/&rfr_iscdi=true