First Report of Leaf Spot Disease on Chamaedorea elegans Caused by Fusarium oxysporum in China
, native to Mexico and Guatemala, is a commonly planted indoor and small-scale garden ornamental due to its stately appearance, tolerance of low light levels, and its ability to improve air quality (El-Khateeb et al. 2010). In December 2021, an unknow leaf-spot disease was observed on in Ganzhou Cit...
Gespeichert in:
Veröffentlicht in: | Plant disease 2023-07, Vol.107 (7), p.2219 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | , native to Mexico and Guatemala, is a commonly planted indoor and small-scale garden ornamental due to its stately appearance, tolerance of low light levels, and its ability to improve air quality (El-Khateeb et al. 2010). In December 2021, an unknow leaf-spot disease was observed on
in Ganzhou City of Jiangxi Province, China (25.83 °N, 114.93 °E). The symptoms were small brown spots on the leaves, gradually expanded into irregular dark brown spots with necrotic tissue forming in the center of the lesions (Figure 2 A-1 and A-2). To isolate the pathogen, the diseased leaves were surface sterilized in 75% ethanol for 30 s. Small pieces of tissue (5 × 5 mm) were taken from the margin between diseased and healthy tissue, disinfected 1% NaClO for 45 s, washed three times in sterile water, and then placed on PDA at 25 ± 1°C for 5 days. Later, five isolates were purified from single spores and each of the five isolates has the same properties as described below. The isolates had abundant pale purple flocculent hyphae with purple pigmentation (Figure 2 C-1 and C-2). Macroconidia were falciform, straight or slightly curved, 1-2 septate, 11.75 to 22.99 × 3.06 to 4.44 μm (μ=16.08 μm × 3.37 μm, n=50) (Figure 2 D-1). Microconidia were oval or elliptical, a septate, 4.03 to 9.19 × 1.92 to 3.73 μm (μ=5.88 μm × 2.66 μm, n=50) (Figure 2 D-2). Chlamydospores formed singly or in pairs, and were terminal or intercalary in hyphae (Figure 2 D-3). Based on morphological characteristics, the fungus was preliminarily identified as a
sp. (Leslie et al. 2006). To confirm the identification, primers ITS1/ITS4 (White et al. 1990), RPB2-5f2/RPB2-7cr (O'Donnell et al. 2010; Liu et al. 1999) and TEF 1-αF/TEF 1-αR (O'Donnell et al. 2000) were used to amplify and sequence apportion of the
,
and
(Table 1). The sequences (Genebank accession number: OM780148, OM782679, OM782680) shared 100% idnetity with
(Genebank accession number: MH866024.1, MH484930.1, MH485021.1). The maximum likelihood (ML) phylogenetic analysis of the concantenated
,
and
sequences was performed in MEGA7.0. (Sudhir et al. 2016), assigning the isoaltes to the
species complex (Figure 1). To confirm the pathogenicity, nine pots of healthy 3-year-old
plants were inoculated in the greenhouse (12 h light/12 h dark cycle, RH 90 %, three for wounded inoculation, three for nonwounded inoculation and three for control). Fifty disinfected leaves were wounded with sterile needles and fifty remained unwounded. The wounded (Figure 2 |
---|---|
ISSN: | 0191-2917 1943-7692 |
DOI: | 10.1094/PDIS-03-22-0696-PDN |