Subdivision surfaces: a new paradigm for thin-shell finite-element analysis

We develop a new paradigm for thin‐shell finite‐element analysis based on the use of subdivision surfaces for (i) describing the geometry of the shell in its undeformed configuration, and (ii) generating smooth interpolated displacement fields possessing bounded energy within the strict framework of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2000-04, Vol.47 (12), p.2039-2072
Hauptverfasser: Cirak, Fehmi, Ortiz, Michael, Schröder, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a new paradigm for thin‐shell finite‐element analysis based on the use of subdivision surfaces for (i) describing the geometry of the shell in its undeformed configuration, and (ii) generating smooth interpolated displacement fields possessing bounded energy within the strict framework of the Kirchhoff–Love theory of thin shells. The particular subdivision strategy adopted here is Loop's scheme, with extensions such as required to account for creases and displacement boundary conditions. The displacement fields obtained by subdivision are H2 and, consequently, have a finite Kirchhoff–Love energy. The resulting finite elements contain three nodes and element integrals are computed by a one‐point quadrature. The displacement field of the shell is interpolated from nodal displacements only. In particular, no nodal rotations are used in the interpolation. The interpolation scheme induced by subdivision is non‐local, i.e. the displacement field over one element depend on the nodal displacements of the element nodes and all nodes of immediately neighbouring elements. However, the use of subdivision surfaces ensures that all the local displacement fields thus constructed combine conformingly to define one single limit surface. Numerical tests, including the Belytschko et al. [10] obstacle course of benchmark problems, demonstrate the high accuracy and optimal convergence of the method. Copyright © 2000 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
DOI:10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1