StomaAI: an efficient and user‐friendly tool for measurement of stomatal pores and density using deep computer vision

Summary Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2023-04, Vol.238 (2), p.904-915
Hauptverfasser: Sai, Na, Bockman, James Paul, Chen, Hao, Watson‐Haigh, Nathan, Xu, Bo, Feng, Xueying, Piechatzek, Adriane, Shen, Chunhua, Gilliham, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 915
container_issue 2
container_start_page 904
container_title The New phytologist
container_volume 238
creator Sai, Na
Bockman, James Paul
Chen, Hao
Watson‐Haigh, Nathan
Xu, Bo
Feng, Xueying
Piechatzek, Adriane
Shen, Chunhua
Gilliham, Matthew
description Summary Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user‐friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai‐app.
doi_str_mv 10.1111/nph.18765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2768815743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768815743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-85ecd84be345e049e89cc6e9e93f916d4140261a8fd96e7429e3f93cc516a4413</originalsourceid><addsrcrecordid>eNp1kc9q3DAQh0VISbabHPICRZBLenAiWbIs9baEtLsQ2kASyM0o8qjVYluuZCf41kfoM_ZJqv3THgrVZRjNp49BP4TOKLmk6Vx1_bdLKktRHKAZ5UJlkrLyEM0IyWUmuHg6Rm9jXBNCVCHyI3TMhJCM83yGXu8H3-rF6gPWHQZrnXHQDamp8Rgh_Prx04Z0UzcTHrxvsPUBt6DjGKDdgN7iuDEMusG9DxC3T2voohumpHDd19RBj41v-3GAgF9cdL47QW-sbiKc7uscPX68ebheZrdfPq2uF7eZYVIWmSzA1JI_A-MFEK5AKmMEKFDMKipqTjnJBdXS1kpAyXMFacCMKajQnFM2Rxc7bx_89xHiULUuGmga3YEfY5WXQkpalJwl9PwfdO3H0KXtEiVLuqFkot7vKBN8jAFs1QfX6jBVlFSbNKqURrVNI7Hv9sbxuYX6L_nn-xNwtQNeXQPT_03V57vlTvkb54KVmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787115748</pqid></control><display><type>article</type><title>StomaAI: an efficient and user‐friendly tool for measurement of stomatal pores and density using deep computer vision</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sai, Na ; Bockman, James Paul ; Chen, Hao ; Watson‐Haigh, Nathan ; Xu, Bo ; Feng, Xueying ; Piechatzek, Adriane ; Shen, Chunhua ; Gilliham, Matthew</creator><creatorcontrib>Sai, Na ; Bockman, James Paul ; Chen, Hao ; Watson‐Haigh, Nathan ; Xu, Bo ; Feng, Xueying ; Piechatzek, Adriane ; Shen, Chunhua ; Gilliham, Matthew</creatorcontrib><description>Summary Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user‐friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai‐app.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.18765</identifier><identifier>PMID: 36683442</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>applied deep learning ; Arabidopsis ; Cereal crops ; Computer vision ; Computers ; convolutional neural network ; Density ; Humans ; Inspection ; Measurement ; Microscopy ; Phenotype ; phenotyping ; Plant physiology ; Plant Stomata - physiology ; Stomata</subject><ispartof>The New phytologist, 2023-04, Vol.238 (2), p.904-915</ispartof><rights>2023 The Authors. © 2023 New Phytologist Foundation</rights><rights>2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-85ecd84be345e049e89cc6e9e93f916d4140261a8fd96e7429e3f93cc516a4413</citedby><cites>FETCH-LOGICAL-c3885-85ecd84be345e049e89cc6e9e93f916d4140261a8fd96e7429e3f93cc516a4413</cites><orcidid>0000-0002-2840-2533 ; 0000-0003-0666-3078 ; 0000-0002-9573-6082 ; 0000-0002-7935-6151 ; 0000-0002-7958-5771 ; 0000-0002-9482-6115 ; 0000-0003-4417-614X ; 0000-0002-8648-8718 ; 0000-0002-7583-2384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.18765$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.18765$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36683442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sai, Na</creatorcontrib><creatorcontrib>Bockman, James Paul</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Watson‐Haigh, Nathan</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Feng, Xueying</creatorcontrib><creatorcontrib>Piechatzek, Adriane</creatorcontrib><creatorcontrib>Shen, Chunhua</creatorcontrib><creatorcontrib>Gilliham, Matthew</creatorcontrib><title>StomaAI: an efficient and user‐friendly tool for measurement of stomatal pores and density using deep computer vision</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user‐friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai‐app.</description><subject>applied deep learning</subject><subject>Arabidopsis</subject><subject>Cereal crops</subject><subject>Computer vision</subject><subject>Computers</subject><subject>convolutional neural network</subject><subject>Density</subject><subject>Humans</subject><subject>Inspection</subject><subject>Measurement</subject><subject>Microscopy</subject><subject>Phenotype</subject><subject>phenotyping</subject><subject>Plant physiology</subject><subject>Plant Stomata - physiology</subject><subject>Stomata</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9q3DAQh0VISbabHPICRZBLenAiWbIs9baEtLsQ2kASyM0o8qjVYluuZCf41kfoM_ZJqv3THgrVZRjNp49BP4TOKLmk6Vx1_bdLKktRHKAZ5UJlkrLyEM0IyWUmuHg6Rm9jXBNCVCHyI3TMhJCM83yGXu8H3-rF6gPWHQZrnXHQDamp8Rgh_Prx04Z0UzcTHrxvsPUBt6DjGKDdgN7iuDEMusG9DxC3T2voohumpHDd19RBj41v-3GAgF9cdL47QW-sbiKc7uscPX68ebheZrdfPq2uF7eZYVIWmSzA1JI_A-MFEK5AKmMEKFDMKipqTjnJBdXS1kpAyXMFacCMKajQnFM2Rxc7bx_89xHiULUuGmga3YEfY5WXQkpalJwl9PwfdO3H0KXtEiVLuqFkot7vKBN8jAFs1QfX6jBVlFSbNKqURrVNI7Hv9sbxuYX6L_nn-xNwtQNeXQPT_03V57vlTvkb54KVmA</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Sai, Na</creator><creator>Bockman, James Paul</creator><creator>Chen, Hao</creator><creator>Watson‐Haigh, Nathan</creator><creator>Xu, Bo</creator><creator>Feng, Xueying</creator><creator>Piechatzek, Adriane</creator><creator>Shen, Chunhua</creator><creator>Gilliham, Matthew</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2840-2533</orcidid><orcidid>https://orcid.org/0000-0003-0666-3078</orcidid><orcidid>https://orcid.org/0000-0002-9573-6082</orcidid><orcidid>https://orcid.org/0000-0002-7935-6151</orcidid><orcidid>https://orcid.org/0000-0002-7958-5771</orcidid><orcidid>https://orcid.org/0000-0002-9482-6115</orcidid><orcidid>https://orcid.org/0000-0003-4417-614X</orcidid><orcidid>https://orcid.org/0000-0002-8648-8718</orcidid><orcidid>https://orcid.org/0000-0002-7583-2384</orcidid></search><sort><creationdate>202304</creationdate><title>StomaAI: an efficient and user‐friendly tool for measurement of stomatal pores and density using deep computer vision</title><author>Sai, Na ; Bockman, James Paul ; Chen, Hao ; Watson‐Haigh, Nathan ; Xu, Bo ; Feng, Xueying ; Piechatzek, Adriane ; Shen, Chunhua ; Gilliham, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-85ecd84be345e049e89cc6e9e93f916d4140261a8fd96e7429e3f93cc516a4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>applied deep learning</topic><topic>Arabidopsis</topic><topic>Cereal crops</topic><topic>Computer vision</topic><topic>Computers</topic><topic>convolutional neural network</topic><topic>Density</topic><topic>Humans</topic><topic>Inspection</topic><topic>Measurement</topic><topic>Microscopy</topic><topic>Phenotype</topic><topic>phenotyping</topic><topic>Plant physiology</topic><topic>Plant Stomata - physiology</topic><topic>Stomata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sai, Na</creatorcontrib><creatorcontrib>Bockman, James Paul</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Watson‐Haigh, Nathan</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Feng, Xueying</creatorcontrib><creatorcontrib>Piechatzek, Adriane</creatorcontrib><creatorcontrib>Shen, Chunhua</creatorcontrib><creatorcontrib>Gilliham, Matthew</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sai, Na</au><au>Bockman, James Paul</au><au>Chen, Hao</au><au>Watson‐Haigh, Nathan</au><au>Xu, Bo</au><au>Feng, Xueying</au><au>Piechatzek, Adriane</au><au>Shen, Chunhua</au><au>Gilliham, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>StomaAI: an efficient and user‐friendly tool for measurement of stomatal pores and density using deep computer vision</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>238</volume><issue>2</issue><spage>904</spage><epage>915</epage><pages>904-915</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user‐friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai‐app.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36683442</pmid><doi>10.1111/nph.18765</doi><tpages>915</tpages><orcidid>https://orcid.org/0000-0002-2840-2533</orcidid><orcidid>https://orcid.org/0000-0003-0666-3078</orcidid><orcidid>https://orcid.org/0000-0002-9573-6082</orcidid><orcidid>https://orcid.org/0000-0002-7935-6151</orcidid><orcidid>https://orcid.org/0000-0002-7958-5771</orcidid><orcidid>https://orcid.org/0000-0002-9482-6115</orcidid><orcidid>https://orcid.org/0000-0003-4417-614X</orcidid><orcidid>https://orcid.org/0000-0002-8648-8718</orcidid><orcidid>https://orcid.org/0000-0002-7583-2384</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2023-04, Vol.238 (2), p.904-915
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2768815743
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects applied deep learning
Arabidopsis
Cereal crops
Computer vision
Computers
convolutional neural network
Density
Humans
Inspection
Measurement
Microscopy
Phenotype
phenotyping
Plant physiology
Plant Stomata - physiology
Stomata
title StomaAI: an efficient and user‐friendly tool for measurement of stomatal pores and density using deep computer vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=StomaAI:%20an%20efficient%20and%20user%E2%80%90friendly%20tool%20for%20measurement%20of%20stomatal%20pores%20and%20density%20using%20deep%20computer%20vision&rft.jtitle=The%20New%20phytologist&rft.au=Sai,%20Na&rft.date=2023-04&rft.volume=238&rft.issue=2&rft.spage=904&rft.epage=915&rft.pages=904-915&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.18765&rft_dat=%3Cproquest_cross%3E2768815743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787115748&rft_id=info:pmid/36683442&rfr_iscdi=true