Muscle injury induces an increase in total and non-rapid eye movement sleep time
Abstract Study Objectives This study describes macro- and micro-sleep responses to a myotoxic skeletal muscle injury and investigates possible mechanisms. Methods We recorded the electroencephalogram (EEG)/electromyogram (EMG) of 24 Wistar rats before and after induction of tibialis anterior muscle...
Gespeichert in:
Veröffentlicht in: | Sleep (New York, N.Y.) N.Y.), 2023-05, Vol.46 (5) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Sleep (New York, N.Y.) |
container_volume | 46 |
creator | Vanneau, T Quiquempoix, M Erkel, M C Drogou, C Trignol, A Sauvet, F Léger, D Gomez-Merino, D Chennaoui, M |
description | Abstract
Study Objectives
This study describes macro- and micro-sleep responses to a myotoxic skeletal muscle injury and investigates possible mechanisms.
Methods
We recorded the electroencephalogram (EEG)/electromyogram (EMG) of 24 Wistar rats before and after induction of tibialis anterior muscle injury (n = 8 per group: control, control + buprenorphine and injured). A top-down analysis of sleep characteristics was processed from total sleep time (TST), sleep stages, sleep stability, spectral analysis, and spindles. To further investigate the mechanisms involved, we analyzed the protein level of sleep regulatory molecules including tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), insulin-like growth factor-1 (IGF-1), and brain and muscle ARNT-like 1 (BMAL1) in plasma, frontal cortex, hippocampus, and tibialis anterior, collected at day +2 after injury from non-EEG/EMG implanted rats.
Results
Muscle injury induces a significant increase in TST at 48 and 72 h post-injury, specific to non-rapid eye movement (NREM) sleep. These increases occur during the dark period and are associated with the higher stability of sleep over 24 h, without change in the different power/frequency spectral bands of NREM/REM sleep. There was no corresponding sleep increase in slow-wave activity or spindle density, nor were there changes in brain levels of the sleep-regulating proinflammatory cytokine IL-1β, which is otherwise involved in the local response to injury. Conversely, decreased protein levels of brain IGF-1 and muscle BMAL1, a core circadian clock gene, after injury may play a role in increased sleep time.
Conclusion
Muscle injury induces an increase in total sleep time at 48- and 72-h post-injury, specific to NREM sleep during the dark period in rats and is associated with higher sleep stability over 24 h.
Graphical Abstract
Graphical Abstract |
doi_str_mv | 10.1093/sleep/zsad012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2768811878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/sleep/zsad012</oup_id><sourcerecordid>3053547299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ed552d705abf8e94d72b1990339f85e3c09811480de6adbbefeade6c53fc2a853</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMozji6dCsBN27qJE3TJksZfMGILnQd0uQWOvRl0gjjrzfzUMGNq_v6OJx7EDqn5JoSyea-ARjmn15bQtMDNKWck0TG0yGaEprTRFDCJ-jE-xWJcybZMZqwPBdCMDJFL0_BmwZw3a2CW8digwGPdRdb40D7zQmP_aibuLS467vE6aG2GNaA2_4DWuhGvHWBx7qFU3RU6cbD2b7O0Nvd7eviIVk-3z8ubpaJYTwbE7Ccp7YgXJeVAJnZIi2plIQxWQkOzBApKM0EsZBrW5ZQgY6t4awyqRaczdDVTndw_XsAP6q29gaaRnfQB6_SIr5IqShERC__oKs-uC66U4zwaKdIpYxUsqOM6713UKnB1a12a0WJ2kSttk-qfdSRv9irhrIF-0N_Z_vrsA_DP1pfwXWJ0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053547299</pqid></control><display><type>article</type><title>Muscle injury induces an increase in total and non-rapid eye movement sleep time</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Vanneau, T ; Quiquempoix, M ; Erkel, M C ; Drogou, C ; Trignol, A ; Sauvet, F ; Léger, D ; Gomez-Merino, D ; Chennaoui, M</creator><creatorcontrib>Vanneau, T ; Quiquempoix, M ; Erkel, M C ; Drogou, C ; Trignol, A ; Sauvet, F ; Léger, D ; Gomez-Merino, D ; Chennaoui, M</creatorcontrib><description>Abstract
Study Objectives
This study describes macro- and micro-sleep responses to a myotoxic skeletal muscle injury and investigates possible mechanisms.
Methods
We recorded the electroencephalogram (EEG)/electromyogram (EMG) of 24 Wistar rats before and after induction of tibialis anterior muscle injury (n = 8 per group: control, control + buprenorphine and injured). A top-down analysis of sleep characteristics was processed from total sleep time (TST), sleep stages, sleep stability, spectral analysis, and spindles. To further investigate the mechanisms involved, we analyzed the protein level of sleep regulatory molecules including tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), insulin-like growth factor-1 (IGF-1), and brain and muscle ARNT-like 1 (BMAL1) in plasma, frontal cortex, hippocampus, and tibialis anterior, collected at day +2 after injury from non-EEG/EMG implanted rats.
Results
Muscle injury induces a significant increase in TST at 48 and 72 h post-injury, specific to non-rapid eye movement (NREM) sleep. These increases occur during the dark period and are associated with the higher stability of sleep over 24 h, without change in the different power/frequency spectral bands of NREM/REM sleep. There was no corresponding sleep increase in slow-wave activity or spindle density, nor were there changes in brain levels of the sleep-regulating proinflammatory cytokine IL-1β, which is otherwise involved in the local response to injury. Conversely, decreased protein levels of brain IGF-1 and muscle BMAL1, a core circadian clock gene, after injury may play a role in increased sleep time.
Conclusion
Muscle injury induces an increase in total sleep time at 48- and 72-h post-injury, specific to NREM sleep during the dark period in rats and is associated with higher sleep stability over 24 h.
Graphical Abstract
Graphical Abstract</description><identifier>ISSN: 0161-8105</identifier><identifier>EISSN: 1550-9109</identifier><identifier>DOI: 10.1093/sleep/zsad012</identifier><identifier>PMID: 36688830</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Animals ; ARNTL Transcription Factors ; Electroencephalography ; Eye Movements ; Insulin-Like Growth Factor I ; Insulin-like growth factors ; Muscles ; NREM sleep ; Rats ; Rats, Wistar ; REM sleep ; Sleep ; Sleep - physiology ; Sleep Stages - physiology ; Tumor necrosis factor-TNF</subject><ispartof>Sleep (New York, N.Y.), 2023-05, Vol.46 (5)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ed552d705abf8e94d72b1990339f85e3c09811480de6adbbefeade6c53fc2a853</citedby><cites>FETCH-LOGICAL-c354t-ed552d705abf8e94d72b1990339f85e3c09811480de6adbbefeade6c53fc2a853</cites><orcidid>0000-0002-4298-2319 ; 0000-0002-4409-813X ; 0000-0002-5750-7051 ; 0000-0002-1445-4957 ; 0000-0002-7084-6330 ; 0000-0002-2908-7352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1579,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36688830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanneau, T</creatorcontrib><creatorcontrib>Quiquempoix, M</creatorcontrib><creatorcontrib>Erkel, M C</creatorcontrib><creatorcontrib>Drogou, C</creatorcontrib><creatorcontrib>Trignol, A</creatorcontrib><creatorcontrib>Sauvet, F</creatorcontrib><creatorcontrib>Léger, D</creatorcontrib><creatorcontrib>Gomez-Merino, D</creatorcontrib><creatorcontrib>Chennaoui, M</creatorcontrib><title>Muscle injury induces an increase in total and non-rapid eye movement sleep time</title><title>Sleep (New York, N.Y.)</title><addtitle>Sleep</addtitle><description>Abstract
Study Objectives
This study describes macro- and micro-sleep responses to a myotoxic skeletal muscle injury and investigates possible mechanisms.
Methods
We recorded the electroencephalogram (EEG)/electromyogram (EMG) of 24 Wistar rats before and after induction of tibialis anterior muscle injury (n = 8 per group: control, control + buprenorphine and injured). A top-down analysis of sleep characteristics was processed from total sleep time (TST), sleep stages, sleep stability, spectral analysis, and spindles. To further investigate the mechanisms involved, we analyzed the protein level of sleep regulatory molecules including tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), insulin-like growth factor-1 (IGF-1), and brain and muscle ARNT-like 1 (BMAL1) in plasma, frontal cortex, hippocampus, and tibialis anterior, collected at day +2 after injury from non-EEG/EMG implanted rats.
Results
Muscle injury induces a significant increase in TST at 48 and 72 h post-injury, specific to non-rapid eye movement (NREM) sleep. These increases occur during the dark period and are associated with the higher stability of sleep over 24 h, without change in the different power/frequency spectral bands of NREM/REM sleep. There was no corresponding sleep increase in slow-wave activity or spindle density, nor were there changes in brain levels of the sleep-regulating proinflammatory cytokine IL-1β, which is otherwise involved in the local response to injury. Conversely, decreased protein levels of brain IGF-1 and muscle BMAL1, a core circadian clock gene, after injury may play a role in increased sleep time.
Conclusion
Muscle injury induces an increase in total sleep time at 48- and 72-h post-injury, specific to NREM sleep during the dark period in rats and is associated with higher sleep stability over 24 h.
Graphical Abstract
Graphical Abstract</description><subject>Animals</subject><subject>ARNTL Transcription Factors</subject><subject>Electroencephalography</subject><subject>Eye Movements</subject><subject>Insulin-Like Growth Factor I</subject><subject>Insulin-like growth factors</subject><subject>Muscles</subject><subject>NREM sleep</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>REM sleep</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep Stages - physiology</subject><subject>Tumor necrosis factor-TNF</subject><issn>0161-8105</issn><issn>1550-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkEtLxDAUhYMozji6dCsBN27qJE3TJksZfMGILnQd0uQWOvRl0gjjrzfzUMGNq_v6OJx7EDqn5JoSyea-ARjmn15bQtMDNKWck0TG0yGaEprTRFDCJ-jE-xWJcybZMZqwPBdCMDJFL0_BmwZw3a2CW8digwGPdRdb40D7zQmP_aibuLS467vE6aG2GNaA2_4DWuhGvHWBx7qFU3RU6cbD2b7O0Nvd7eviIVk-3z8ubpaJYTwbE7Ccp7YgXJeVAJnZIi2plIQxWQkOzBApKM0EsZBrW5ZQgY6t4awyqRaczdDVTndw_XsAP6q29gaaRnfQB6_SIr5IqShERC__oKs-uC66U4zwaKdIpYxUsqOM6713UKnB1a12a0WJ2kSttk-qfdSRv9irhrIF-0N_Z_vrsA_DP1pfwXWJ0g</recordid><startdate>20230510</startdate><enddate>20230510</enddate><creator>Vanneau, T</creator><creator>Quiquempoix, M</creator><creator>Erkel, M C</creator><creator>Drogou, C</creator><creator>Trignol, A</creator><creator>Sauvet, F</creator><creator>Léger, D</creator><creator>Gomez-Merino, D</creator><creator>Chennaoui, M</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4298-2319</orcidid><orcidid>https://orcid.org/0000-0002-4409-813X</orcidid><orcidid>https://orcid.org/0000-0002-5750-7051</orcidid><orcidid>https://orcid.org/0000-0002-1445-4957</orcidid><orcidid>https://orcid.org/0000-0002-7084-6330</orcidid><orcidid>https://orcid.org/0000-0002-2908-7352</orcidid></search><sort><creationdate>20230510</creationdate><title>Muscle injury induces an increase in total and non-rapid eye movement sleep time</title><author>Vanneau, T ; Quiquempoix, M ; Erkel, M C ; Drogou, C ; Trignol, A ; Sauvet, F ; Léger, D ; Gomez-Merino, D ; Chennaoui, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ed552d705abf8e94d72b1990339f85e3c09811480de6adbbefeade6c53fc2a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>ARNTL Transcription Factors</topic><topic>Electroencephalography</topic><topic>Eye Movements</topic><topic>Insulin-Like Growth Factor I</topic><topic>Insulin-like growth factors</topic><topic>Muscles</topic><topic>NREM sleep</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>REM sleep</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep Stages - physiology</topic><topic>Tumor necrosis factor-TNF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanneau, T</creatorcontrib><creatorcontrib>Quiquempoix, M</creatorcontrib><creatorcontrib>Erkel, M C</creatorcontrib><creatorcontrib>Drogou, C</creatorcontrib><creatorcontrib>Trignol, A</creatorcontrib><creatorcontrib>Sauvet, F</creatorcontrib><creatorcontrib>Léger, D</creatorcontrib><creatorcontrib>Gomez-Merino, D</creatorcontrib><creatorcontrib>Chennaoui, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Sleep (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanneau, T</au><au>Quiquempoix, M</au><au>Erkel, M C</au><au>Drogou, C</au><au>Trignol, A</au><au>Sauvet, F</au><au>Léger, D</au><au>Gomez-Merino, D</au><au>Chennaoui, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muscle injury induces an increase in total and non-rapid eye movement sleep time</atitle><jtitle>Sleep (New York, N.Y.)</jtitle><addtitle>Sleep</addtitle><date>2023-05-10</date><risdate>2023</risdate><volume>46</volume><issue>5</issue><issn>0161-8105</issn><eissn>1550-9109</eissn><abstract>Abstract
Study Objectives
This study describes macro- and micro-sleep responses to a myotoxic skeletal muscle injury and investigates possible mechanisms.
Methods
We recorded the electroencephalogram (EEG)/electromyogram (EMG) of 24 Wistar rats before and after induction of tibialis anterior muscle injury (n = 8 per group: control, control + buprenorphine and injured). A top-down analysis of sleep characteristics was processed from total sleep time (TST), sleep stages, sleep stability, spectral analysis, and spindles. To further investigate the mechanisms involved, we analyzed the protein level of sleep regulatory molecules including tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), insulin-like growth factor-1 (IGF-1), and brain and muscle ARNT-like 1 (BMAL1) in plasma, frontal cortex, hippocampus, and tibialis anterior, collected at day +2 after injury from non-EEG/EMG implanted rats.
Results
Muscle injury induces a significant increase in TST at 48 and 72 h post-injury, specific to non-rapid eye movement (NREM) sleep. These increases occur during the dark period and are associated with the higher stability of sleep over 24 h, without change in the different power/frequency spectral bands of NREM/REM sleep. There was no corresponding sleep increase in slow-wave activity or spindle density, nor were there changes in brain levels of the sleep-regulating proinflammatory cytokine IL-1β, which is otherwise involved in the local response to injury. Conversely, decreased protein levels of brain IGF-1 and muscle BMAL1, a core circadian clock gene, after injury may play a role in increased sleep time.
Conclusion
Muscle injury induces an increase in total sleep time at 48- and 72-h post-injury, specific to NREM sleep during the dark period in rats and is associated with higher sleep stability over 24 h.
Graphical Abstract
Graphical Abstract</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>36688830</pmid><doi>10.1093/sleep/zsad012</doi><orcidid>https://orcid.org/0000-0002-4298-2319</orcidid><orcidid>https://orcid.org/0000-0002-4409-813X</orcidid><orcidid>https://orcid.org/0000-0002-5750-7051</orcidid><orcidid>https://orcid.org/0000-0002-1445-4957</orcidid><orcidid>https://orcid.org/0000-0002-7084-6330</orcidid><orcidid>https://orcid.org/0000-0002-2908-7352</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0161-8105 |
ispartof | Sleep (New York, N.Y.), 2023-05, Vol.46 (5) |
issn | 0161-8105 1550-9109 |
language | eng |
recordid | cdi_proquest_miscellaneous_2768811878 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals ARNTL Transcription Factors Electroencephalography Eye Movements Insulin-Like Growth Factor I Insulin-like growth factors Muscles NREM sleep Rats Rats, Wistar REM sleep Sleep Sleep - physiology Sleep Stages - physiology Tumor necrosis factor-TNF |
title | Muscle injury induces an increase in total and non-rapid eye movement sleep time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muscle%20injury%20induces%20an%20increase%20in%20total%20and%20non-rapid%20eye%20movement%20sleep%20time&rft.jtitle=Sleep%20(New%20York,%20N.Y.)&rft.au=Vanneau,%20T&rft.date=2023-05-10&rft.volume=46&rft.issue=5&rft.issn=0161-8105&rft.eissn=1550-9109&rft_id=info:doi/10.1093/sleep/zsad012&rft_dat=%3Cproquest_cross%3E3053547299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053547299&rft_id=info:pmid/36688830&rft_oup_id=10.1093/sleep/zsad012&rfr_iscdi=true |