Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model

A study of stress relaxation in samples of polymers PMMA and PTFE (Methylmethacrylate and Polytetrafluorethylene) has been carried out, pointing out that there exists not only one time of relaxation as the classic Maxwell model predicts but two distributions of relaxation time. These can be approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer testing 2002, Vol.21 (3), p.325-331
Hauptverfasser: Hernández-Jiménez, A., Hernández-Santiago, J., Macias-Garcı́a, A., Sánchez-González, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 3
container_start_page 325
container_title Polymer testing
container_volume 21
creator Hernández-Jiménez, A.
Hernández-Santiago, J.
Macias-Garcı́a, A.
Sánchez-González, J.
description A study of stress relaxation in samples of polymers PMMA and PTFE (Methylmethacrylate and Polytetrafluorethylene) has been carried out, pointing out that there exists not only one time of relaxation as the classic Maxwell model predicts but two distributions of relaxation time. These can be approached by using a fractional Maxwell's model in which the stress appears as two non-integer order derivatives of the strain. For short times the pattern has an order of the smaller derivative. This fact indicates a more elastic behavior, closer to the Hooke's model. For longer times the order is bigger, showing a behaviour that rather approaches the Newtonian pattern. The two polymers studied in this article, PMMA and PTFE, present a clearly viscoelastic behavior where the deformation of the sample is not instantaneous when applying a load. As a consequence, after the initial deformation process, if we keep the total strain constant, the plastic deformation of the sample increases and the value of their elastic deformation decreases and therefore the stress also decreases — the phenomenon of stress relaxation.
doi_str_mv 10.1016/S0142-9418(01)00092-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27685427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142941801000927</els_id><sourcerecordid>27685427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-76ea6e44b4912294288099d16ff3837c4f9989ef980072dcb5c376cfd7149e23</originalsourceid><addsrcrecordid>eNqFkMFOAyEURYnRxFr9BBM2Gl2MAsMMsDKm0WrSxka7J5QBg6EzFWa0_XuZttGlq7c55933LgDnGN1ghMvbN4QpyQTF_Arha4SQIBk7AAPMWZ6RnPJDMPhFjsFJjB8JKpI6AONX49Vata6p4bKpOt9F6Go4m07voaorOJs_PkDr2tbV73CxgTYo3cPKw6lafxvve834U3BklY_mbD-HIInz0VM2eRk_j-4nmaYEtRkrjSoNpQsqMCGCEs6REBUurc15zjS1QnBhrOAIMVLpRaFzVmpbMUyFIfkQXO7WrkLz2ZnYyqWLOl2hatN0URJW8oISlsBiB-rQxBiMlavglipsJEayb01uW5N9JRJhuW1N9t7FPkBFrXx6t9Yu_sk5TQdSnLi7HWfSs1_OBBm1M7U2lQtGt7Jq3D9JPzVpfyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27685427</pqid></control><display><type>article</type><title>Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hernández-Jiménez, A. ; Hernández-Santiago, J. ; Macias-Garcı́a, A. ; Sánchez-González, J.</creator><creatorcontrib>Hernández-Jiménez, A. ; Hernández-Santiago, J. ; Macias-Garcı́a, A. ; Sánchez-González, J.</creatorcontrib><description>A study of stress relaxation in samples of polymers PMMA and PTFE (Methylmethacrylate and Polytetrafluorethylene) has been carried out, pointing out that there exists not only one time of relaxation as the classic Maxwell model predicts but two distributions of relaxation time. These can be approached by using a fractional Maxwell's model in which the stress appears as two non-integer order derivatives of the strain. For short times the pattern has an order of the smaller derivative. This fact indicates a more elastic behavior, closer to the Hooke's model. For longer times the order is bigger, showing a behaviour that rather approaches the Newtonian pattern. The two polymers studied in this article, PMMA and PTFE, present a clearly viscoelastic behavior where the deformation of the sample is not instantaneous when applying a load. As a consequence, after the initial deformation process, if we keep the total strain constant, the plastic deformation of the sample increases and the value of their elastic deformation decreases and therefore the stress also decreases — the phenomenon of stress relaxation.</description><identifier>ISSN: 0142-9418</identifier><identifier>EISSN: 1873-2348</identifier><identifier>DOI: 10.1016/S0142-9418(01)00092-7</identifier><identifier>CODEN: POTEDZ</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Elastic models ; Exact sciences and technology ; Fractional calculus ; Linear viscoelasticity ; Organic polymers ; Physicochemistry of polymers ; Polymers ; Properties and characterization ; Relaxation ; Relaxation times distribution ; Rheology and viscoelasticity</subject><ispartof>Polymer testing, 2002, Vol.21 (3), p.325-331</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-76ea6e44b4912294288099d16ff3837c4f9989ef980072dcb5c376cfd7149e23</citedby><cites>FETCH-LOGICAL-c420t-76ea6e44b4912294288099d16ff3837c4f9989ef980072dcb5c376cfd7149e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0142-9418(01)00092-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27921,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13499841$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández-Jiménez, A.</creatorcontrib><creatorcontrib>Hernández-Santiago, J.</creatorcontrib><creatorcontrib>Macias-Garcı́a, A.</creatorcontrib><creatorcontrib>Sánchez-González, J.</creatorcontrib><title>Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model</title><title>Polymer testing</title><description>A study of stress relaxation in samples of polymers PMMA and PTFE (Methylmethacrylate and Polytetrafluorethylene) has been carried out, pointing out that there exists not only one time of relaxation as the classic Maxwell model predicts but two distributions of relaxation time. These can be approached by using a fractional Maxwell's model in which the stress appears as two non-integer order derivatives of the strain. For short times the pattern has an order of the smaller derivative. This fact indicates a more elastic behavior, closer to the Hooke's model. For longer times the order is bigger, showing a behaviour that rather approaches the Newtonian pattern. The two polymers studied in this article, PMMA and PTFE, present a clearly viscoelastic behavior where the deformation of the sample is not instantaneous when applying a load. As a consequence, after the initial deformation process, if we keep the total strain constant, the plastic deformation of the sample increases and the value of their elastic deformation decreases and therefore the stress also decreases — the phenomenon of stress relaxation.</description><subject>Applied sciences</subject><subject>Elastic models</subject><subject>Exact sciences and technology</subject><subject>Fractional calculus</subject><subject>Linear viscoelasticity</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers</subject><subject>Properties and characterization</subject><subject>Relaxation</subject><subject>Relaxation times distribution</subject><subject>Rheology and viscoelasticity</subject><issn>0142-9418</issn><issn>1873-2348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOAyEURYnRxFr9BBM2Gl2MAsMMsDKm0WrSxka7J5QBg6EzFWa0_XuZttGlq7c55933LgDnGN1ghMvbN4QpyQTF_Arha4SQIBk7AAPMWZ6RnPJDMPhFjsFJjB8JKpI6AONX49Vata6p4bKpOt9F6Go4m07voaorOJs_PkDr2tbV73CxgTYo3cPKw6lafxvve834U3BklY_mbD-HIInz0VM2eRk_j-4nmaYEtRkrjSoNpQsqMCGCEs6REBUurc15zjS1QnBhrOAIMVLpRaFzVmpbMUyFIfkQXO7WrkLz2ZnYyqWLOl2hatN0URJW8oISlsBiB-rQxBiMlavglipsJEayb01uW5N9JRJhuW1N9t7FPkBFrXx6t9Yu_sk5TQdSnLi7HWfSs1_OBBm1M7U2lQtGt7Jq3D9JPzVpfyU</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Hernández-Jiménez, A.</creator><creator>Hernández-Santiago, J.</creator><creator>Macias-Garcı́a, A.</creator><creator>Sánchez-González, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2002</creationdate><title>Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model</title><author>Hernández-Jiménez, A. ; Hernández-Santiago, J. ; Macias-Garcı́a, A. ; Sánchez-González, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-76ea6e44b4912294288099d16ff3837c4f9989ef980072dcb5c376cfd7149e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Elastic models</topic><topic>Exact sciences and technology</topic><topic>Fractional calculus</topic><topic>Linear viscoelasticity</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers</topic><topic>Properties and characterization</topic><topic>Relaxation</topic><topic>Relaxation times distribution</topic><topic>Rheology and viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Jiménez, A.</creatorcontrib><creatorcontrib>Hernández-Santiago, J.</creatorcontrib><creatorcontrib>Macias-Garcı́a, A.</creatorcontrib><creatorcontrib>Sánchez-González, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Jiménez, A.</au><au>Hernández-Santiago, J.</au><au>Macias-Garcı́a, A.</au><au>Sánchez-González, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model</atitle><jtitle>Polymer testing</jtitle><date>2002</date><risdate>2002</risdate><volume>21</volume><issue>3</issue><spage>325</spage><epage>331</epage><pages>325-331</pages><issn>0142-9418</issn><eissn>1873-2348</eissn><coden>POTEDZ</coden><abstract>A study of stress relaxation in samples of polymers PMMA and PTFE (Methylmethacrylate and Polytetrafluorethylene) has been carried out, pointing out that there exists not only one time of relaxation as the classic Maxwell model predicts but two distributions of relaxation time. These can be approached by using a fractional Maxwell's model in which the stress appears as two non-integer order derivatives of the strain. For short times the pattern has an order of the smaller derivative. This fact indicates a more elastic behavior, closer to the Hooke's model. For longer times the order is bigger, showing a behaviour that rather approaches the Newtonian pattern. The two polymers studied in this article, PMMA and PTFE, present a clearly viscoelastic behavior where the deformation of the sample is not instantaneous when applying a load. As a consequence, after the initial deformation process, if we keep the total strain constant, the plastic deformation of the sample increases and the value of their elastic deformation decreases and therefore the stress also decreases — the phenomenon of stress relaxation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0142-9418(01)00092-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9418
ispartof Polymer testing, 2002, Vol.21 (3), p.325-331
issn 0142-9418
1873-2348
language eng
recordid cdi_proquest_miscellaneous_27685427
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Elastic models
Exact sciences and technology
Fractional calculus
Linear viscoelasticity
Organic polymers
Physicochemistry of polymers
Polymers
Properties and characterization
Relaxation
Relaxation times distribution
Rheology and viscoelasticity
title Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20modulus%20in%20PMMA%20and%20PTFE%20fitting%20by%20fractional%20Maxwell%20model&rft.jtitle=Polymer%20testing&rft.au=Hern%C3%A1ndez-Jim%C3%A9nez,%20A.&rft.date=2002&rft.volume=21&rft.issue=3&rft.spage=325&rft.epage=331&rft.pages=325-331&rft.issn=0142-9418&rft.eissn=1873-2348&rft.coden=POTEDZ&rft_id=info:doi/10.1016/S0142-9418(01)00092-7&rft_dat=%3Cproquest_cross%3E27685427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27685427&rft_id=info:pmid/&rft_els_id=S0142941801000927&rfr_iscdi=true