Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide
Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be...
Gespeichert in:
Veröffentlicht in: | Nature materials 2023-04, Vol.22 (4), p.459-465 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 465 |
---|---|
container_issue | 4 |
container_start_page | 459 |
container_title | Nature materials |
container_volume | 22 |
creator | Edwards, B. Dowinton, O. Hall, A. E. Murgatroyd, P. A. E. Buchberger, S. Antonelli, T. Siemann, G.-R. Rajan, A. Morales, E. Abarca Zivanovic, A. Bigi, C. Belosludov, R. V. Polley, C. M. Carbone, D. Mayoh, D. A. Balakrishnan, G. Bahramy, M. S. King, P. D. C. |
description | Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date. Here, we investigate the electronic structure of the V-intercalated transition metal dichalcogenide V
1/3
NbS
2
using microscopic-area spatially resolved and angle-resolved photoemission spectroscopy. Our measurements and corresponding density functional theory calculations reveal that the bulk magnetic order induces a giant valley-selective Ising coupling exceeding 50 meV in the surface NbS
2
layer, equivalent to application of a ~250 T magnetic field. This energy scale is of comparable magnitude to the intrinsic spin–orbit splittings, and indicates how coupling of local magnetic moments to itinerant states of a transition metal dichalcogenide monolayer provides a powerful route to controlling their valley–spin splittings.
The authors study the electronic structure of the intercalated transition metal dichalcogenide V
1/3
NbS
2
, showing that its bulk magnetism can lead to a strong tunability of spin–valley locked states at its surface. |
doi_str_mv | 10.1038/s41563-022-01459-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2768240748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793281933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290z-8c5bb66f3de3399538345b738f6a8f9d6524dca653c74f9e3e6791ad9a1f49833</originalsourceid><addsrcrecordid>eNp9kT1rHDEQhoVJiD-SP-AiCNKk2UTfK5XGOI7B4CZp0gidNDrLaLVnaTdw9-u9zl1sSJFqBuZ53xnmReicki-UcP21CSoV7whjHaFCmm53hE6o6FUnlCJvDj2ljB2j09YeCGFUSvUOHXOlpOasP0HhOrky4d8uZ9h2vwAGV7Af501OZY1TwdM94DbX6Dzg7LZQ8RjxwqQyQfUuuwkCnqorLU1pLHiAyWUckr932Y9rKCnAe_Q2utzgw6GeoZ_frn5cfu9u765vLi9uO88M2XXay9VKqcgDcG6M5JoLueq5jsrpaIKSTATvlOS-F9EAB9Ub6oJxNAqjOT9Dn_e-mzo-ztAmO6TmIWdXYJybZb3STJBe6AX99A_6MM61LNctlOFMU8OfDdme8nVsrUK0m5oGV7eWEvucgd1nYJcM7J8M7G4RfTxYz6sBwovk79MXgO-BtozKGurr7v_YPgETmZKv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793281933</pqid></control><display><type>article</type><title>Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide</title><source>SpringerLink Journals</source><source>Nature</source><creator>Edwards, B. ; Dowinton, O. ; Hall, A. E. ; Murgatroyd, P. A. E. ; Buchberger, S. ; Antonelli, T. ; Siemann, G.-R. ; Rajan, A. ; Morales, E. Abarca ; Zivanovic, A. ; Bigi, C. ; Belosludov, R. V. ; Polley, C. M. ; Carbone, D. ; Mayoh, D. A. ; Balakrishnan, G. ; Bahramy, M. S. ; King, P. D. C.</creator><creatorcontrib>Edwards, B. ; Dowinton, O. ; Hall, A. E. ; Murgatroyd, P. A. E. ; Buchberger, S. ; Antonelli, T. ; Siemann, G.-R. ; Rajan, A. ; Morales, E. Abarca ; Zivanovic, A. ; Bigi, C. ; Belosludov, R. V. ; Polley, C. M. ; Carbone, D. ; Mayoh, D. A. ; Balakrishnan, G. ; Bahramy, M. S. ; King, P. D. C.</creatorcontrib><description>Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date. Here, we investigate the electronic structure of the V-intercalated transition metal dichalcogenide V
1/3
NbS
2
using microscopic-area spatially resolved and angle-resolved photoemission spectroscopy. Our measurements and corresponding density functional theory calculations reveal that the bulk magnetic order induces a giant valley-selective Ising coupling exceeding 50 meV in the surface NbS
2
layer, equivalent to application of a ~250 T magnetic field. This energy scale is of comparable magnitude to the intrinsic spin–orbit splittings, and indicates how coupling of local magnetic moments to itinerant states of a transition metal dichalcogenide monolayer provides a powerful route to controlling their valley–spin splittings.
The authors study the electronic structure of the intercalated transition metal dichalcogenide V
1/3
NbS
2
, showing that its bulk magnetism can lead to a strong tunability of spin–valley locked states at its surface.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-022-01459-z</identifier><identifier>PMID: 36658327</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/544 ; 639/766/119/995 ; 639/766/119/997 ; Biomaterials ; Bulk density ; Chalcogenides ; Chemistry and Materials Science ; Condensed Matter Physics ; Density functional theory ; Electron spin ; Electronic structure ; Ising model ; Magnetic fields ; Magnetic moments ; Magnetism ; Materials Science ; Metals ; Nanotechnology ; Optical and Electronic Materials ; Photoelectric emission ; Physics ; Spectrum analysis ; Spin-orbit interactions ; Superconductivity ; Surface layers ; Transition metal compounds ; Valleys</subject><ispartof>Nature materials, 2023-04, Vol.22 (4), p.459-465</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290z-8c5bb66f3de3399538345b738f6a8f9d6524dca653c74f9e3e6791ad9a1f49833</citedby><cites>FETCH-LOGICAL-c290z-8c5bb66f3de3399538345b738f6a8f9d6524dca653c74f9e3e6791ad9a1f49833</cites><orcidid>0000-0001-9024-6335 ; 0000-0002-7219-4241 ; 0000-0001-5356-3032 ; 0000-0002-5890-1149 ; 0000-0003-1017-6213 ; 0000-0003-0977-3993 ; 0000-0002-7020-3263 ; 0000-0003-0029-5059 ; 0000-0001-5184-7218 ; 0000-0002-6523-9034 ; 0000-0003-0015-0220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-022-01459-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-022-01459-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36658327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Edwards, B.</creatorcontrib><creatorcontrib>Dowinton, O.</creatorcontrib><creatorcontrib>Hall, A. E.</creatorcontrib><creatorcontrib>Murgatroyd, P. A. E.</creatorcontrib><creatorcontrib>Buchberger, S.</creatorcontrib><creatorcontrib>Antonelli, T.</creatorcontrib><creatorcontrib>Siemann, G.-R.</creatorcontrib><creatorcontrib>Rajan, A.</creatorcontrib><creatorcontrib>Morales, E. Abarca</creatorcontrib><creatorcontrib>Zivanovic, A.</creatorcontrib><creatorcontrib>Bigi, C.</creatorcontrib><creatorcontrib>Belosludov, R. V.</creatorcontrib><creatorcontrib>Polley, C. M.</creatorcontrib><creatorcontrib>Carbone, D.</creatorcontrib><creatorcontrib>Mayoh, D. A.</creatorcontrib><creatorcontrib>Balakrishnan, G.</creatorcontrib><creatorcontrib>Bahramy, M. S.</creatorcontrib><creatorcontrib>King, P. D. C.</creatorcontrib><title>Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date. Here, we investigate the electronic structure of the V-intercalated transition metal dichalcogenide V
1/3
NbS
2
using microscopic-area spatially resolved and angle-resolved photoemission spectroscopy. Our measurements and corresponding density functional theory calculations reveal that the bulk magnetic order induces a giant valley-selective Ising coupling exceeding 50 meV in the surface NbS
2
layer, equivalent to application of a ~250 T magnetic field. This energy scale is of comparable magnitude to the intrinsic spin–orbit splittings, and indicates how coupling of local magnetic moments to itinerant states of a transition metal dichalcogenide monolayer provides a powerful route to controlling their valley–spin splittings.
The authors study the electronic structure of the intercalated transition metal dichalcogenide V
1/3
NbS
2
, showing that its bulk magnetism can lead to a strong tunability of spin–valley locked states at its surface.</description><subject>639/766/119/544</subject><subject>639/766/119/995</subject><subject>639/766/119/997</subject><subject>Biomaterials</subject><subject>Bulk density</subject><subject>Chalcogenides</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Electron spin</subject><subject>Electronic structure</subject><subject>Ising model</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectric emission</subject><subject>Physics</subject><subject>Spectrum analysis</subject><subject>Spin-orbit interactions</subject><subject>Superconductivity</subject><subject>Surface layers</subject><subject>Transition metal compounds</subject><subject>Valleys</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kT1rHDEQhoVJiD-SP-AiCNKk2UTfK5XGOI7B4CZp0gidNDrLaLVnaTdw9-u9zl1sSJFqBuZ53xnmReicki-UcP21CSoV7whjHaFCmm53hE6o6FUnlCJvDj2ljB2j09YeCGFUSvUOHXOlpOasP0HhOrky4d8uZ9h2vwAGV7Af501OZY1TwdM94DbX6Dzg7LZQ8RjxwqQyQfUuuwkCnqorLU1pLHiAyWUckr932Y9rKCnAe_Q2utzgw6GeoZ_frn5cfu9u765vLi9uO88M2XXay9VKqcgDcG6M5JoLueq5jsrpaIKSTATvlOS-F9EAB9Ub6oJxNAqjOT9Dn_e-mzo-ztAmO6TmIWdXYJybZb3STJBe6AX99A_6MM61LNctlOFMU8OfDdme8nVsrUK0m5oGV7eWEvucgd1nYJcM7J8M7G4RfTxYz6sBwovk79MXgO-BtozKGurr7v_YPgETmZKv</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Edwards, B.</creator><creator>Dowinton, O.</creator><creator>Hall, A. E.</creator><creator>Murgatroyd, P. A. E.</creator><creator>Buchberger, S.</creator><creator>Antonelli, T.</creator><creator>Siemann, G.-R.</creator><creator>Rajan, A.</creator><creator>Morales, E. Abarca</creator><creator>Zivanovic, A.</creator><creator>Bigi, C.</creator><creator>Belosludov, R. V.</creator><creator>Polley, C. M.</creator><creator>Carbone, D.</creator><creator>Mayoh, D. A.</creator><creator>Balakrishnan, G.</creator><creator>Bahramy, M. S.</creator><creator>King, P. D. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9024-6335</orcidid><orcidid>https://orcid.org/0000-0002-7219-4241</orcidid><orcidid>https://orcid.org/0000-0001-5356-3032</orcidid><orcidid>https://orcid.org/0000-0002-5890-1149</orcidid><orcidid>https://orcid.org/0000-0003-1017-6213</orcidid><orcidid>https://orcid.org/0000-0003-0977-3993</orcidid><orcidid>https://orcid.org/0000-0002-7020-3263</orcidid><orcidid>https://orcid.org/0000-0003-0029-5059</orcidid><orcidid>https://orcid.org/0000-0001-5184-7218</orcidid><orcidid>https://orcid.org/0000-0002-6523-9034</orcidid><orcidid>https://orcid.org/0000-0003-0015-0220</orcidid></search><sort><creationdate>20230401</creationdate><title>Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide</title><author>Edwards, B. ; Dowinton, O. ; Hall, A. E. ; Murgatroyd, P. A. E. ; Buchberger, S. ; Antonelli, T. ; Siemann, G.-R. ; Rajan, A. ; Morales, E. Abarca ; Zivanovic, A. ; Bigi, C. ; Belosludov, R. V. ; Polley, C. M. ; Carbone, D. ; Mayoh, D. A. ; Balakrishnan, G. ; Bahramy, M. S. ; King, P. D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290z-8c5bb66f3de3399538345b738f6a8f9d6524dca653c74f9e3e6791ad9a1f49833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/119/544</topic><topic>639/766/119/995</topic><topic>639/766/119/997</topic><topic>Biomaterials</topic><topic>Bulk density</topic><topic>Chalcogenides</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Electron spin</topic><topic>Electronic structure</topic><topic>Ising model</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectric emission</topic><topic>Physics</topic><topic>Spectrum analysis</topic><topic>Spin-orbit interactions</topic><topic>Superconductivity</topic><topic>Surface layers</topic><topic>Transition metal compounds</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, B.</creatorcontrib><creatorcontrib>Dowinton, O.</creatorcontrib><creatorcontrib>Hall, A. E.</creatorcontrib><creatorcontrib>Murgatroyd, P. A. E.</creatorcontrib><creatorcontrib>Buchberger, S.</creatorcontrib><creatorcontrib>Antonelli, T.</creatorcontrib><creatorcontrib>Siemann, G.-R.</creatorcontrib><creatorcontrib>Rajan, A.</creatorcontrib><creatorcontrib>Morales, E. Abarca</creatorcontrib><creatorcontrib>Zivanovic, A.</creatorcontrib><creatorcontrib>Bigi, C.</creatorcontrib><creatorcontrib>Belosludov, R. V.</creatorcontrib><creatorcontrib>Polley, C. M.</creatorcontrib><creatorcontrib>Carbone, D.</creatorcontrib><creatorcontrib>Mayoh, D. A.</creatorcontrib><creatorcontrib>Balakrishnan, G.</creatorcontrib><creatorcontrib>Bahramy, M. S.</creatorcontrib><creatorcontrib>King, P. D. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, B.</au><au>Dowinton, O.</au><au>Hall, A. E.</au><au>Murgatroyd, P. A. E.</au><au>Buchberger, S.</au><au>Antonelli, T.</au><au>Siemann, G.-R.</au><au>Rajan, A.</au><au>Morales, E. Abarca</au><au>Zivanovic, A.</au><au>Bigi, C.</au><au>Belosludov, R. V.</au><au>Polley, C. M.</au><au>Carbone, D.</au><au>Mayoh, D. A.</au><au>Balakrishnan, G.</au><au>Bahramy, M. S.</au><au>King, P. D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>22</volume><issue>4</issue><spage>459</spage><epage>465</epage><pages>459-465</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date. Here, we investigate the electronic structure of the V-intercalated transition metal dichalcogenide V
1/3
NbS
2
using microscopic-area spatially resolved and angle-resolved photoemission spectroscopy. Our measurements and corresponding density functional theory calculations reveal that the bulk magnetic order induces a giant valley-selective Ising coupling exceeding 50 meV in the surface NbS
2
layer, equivalent to application of a ~250 T magnetic field. This energy scale is of comparable magnitude to the intrinsic spin–orbit splittings, and indicates how coupling of local magnetic moments to itinerant states of a transition metal dichalcogenide monolayer provides a powerful route to controlling their valley–spin splittings.
The authors study the electronic structure of the intercalated transition metal dichalcogenide V
1/3
NbS
2
, showing that its bulk magnetism can lead to a strong tunability of spin–valley locked states at its surface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36658327</pmid><doi>10.1038/s41563-022-01459-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9024-6335</orcidid><orcidid>https://orcid.org/0000-0002-7219-4241</orcidid><orcidid>https://orcid.org/0000-0001-5356-3032</orcidid><orcidid>https://orcid.org/0000-0002-5890-1149</orcidid><orcidid>https://orcid.org/0000-0003-1017-6213</orcidid><orcidid>https://orcid.org/0000-0003-0977-3993</orcidid><orcidid>https://orcid.org/0000-0002-7020-3263</orcidid><orcidid>https://orcid.org/0000-0003-0029-5059</orcidid><orcidid>https://orcid.org/0000-0001-5184-7218</orcidid><orcidid>https://orcid.org/0000-0002-6523-9034</orcidid><orcidid>https://orcid.org/0000-0003-0015-0220</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2023-04, Vol.22 (4), p.459-465 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2768240748 |
source | SpringerLink Journals; Nature |
subjects | 639/766/119/544 639/766/119/995 639/766/119/997 Biomaterials Bulk density Chalcogenides Chemistry and Materials Science Condensed Matter Physics Density functional theory Electron spin Electronic structure Ising model Magnetic fields Magnetic moments Magnetism Materials Science Metals Nanotechnology Optical and Electronic Materials Photoelectric emission Physics Spectrum analysis Spin-orbit interactions Superconductivity Surface layers Transition metal compounds Valleys |
title | Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20valley-Zeeman%20coupling%20in%20the%20surface%20layer%20of%20an%20intercalated%20transition%20metal%20dichalcogenide&rft.jtitle=Nature%20materials&rft.au=Edwards,%20B.&rft.date=2023-04-01&rft.volume=22&rft.issue=4&rft.spage=459&rft.epage=465&rft.pages=459-465&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-022-01459-z&rft_dat=%3Cproquest_cross%3E2793281933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793281933&rft_id=info:pmid/36658327&rfr_iscdi=true |