A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search
[Display omitted] Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly developed machine-learning accelerated c...
Gespeichert in:
Veröffentlicht in: | Science bulletin 2018-07, Vol.63 (13), p.817-824 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 13 |
container_start_page | 817 |
container_title | Science bulletin |
container_volume | 63 |
creator | Xia, Kang Gao, Hao Liu, Cong Yuan, Jianan Sun, Jian Wang, Hui-Tian Xing, Dingyu |
description | [Display omitted]
Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly developed machine-learning accelerated crystal structure searching method, we designed a superhard tungsten nitride, h-WN6, which can be synthesized at pressure around 65 GPa and quenchable to ambient pressure. This h-WN6 is constructed with single-bonded armchair-like N6 rings and presents ionic-like features, which can be formulated as W2.4+N62.4−. It has a band gap of 1.6 eV at 0 GPa and exhibits an abnormal gap broadening behavior under pressure. Excitingly, this h-WN6 is found to be the hardest among transition metal nitrides known so far (Vickers hardness around 57 GPa) and also has a very high melting temperature (around 1,900 K). Additionally, the good gravimetric (3.1 kJ/g) and volumetric (28.0 kJ/cm3) energy densities make this nitrogen-rich compound a potential high-energy-density material. These predictions support the designing rules and may stimulate future experiments to synthesize superhard and high-energy-density material. |
doi_str_mv | 10.1016/j.scib.2018.05.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2768239577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095927318302494</els_id><sourcerecordid>2768239577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4692435446c302c48dc17d7209538ff1fa3fe291731cdb3e886c48fb9d4868f23</originalsourceid><addsrcrecordid>eNp9kE2L2zAQhsXSsgnb_IEeio692NWHLcnQyxK6u4VAL-1ZyNI4UXDkVJIX8u8rk3SPe5qBeeZl5kHoMyU1JVR8O9bJ-r5mhKqatDVh8g6tGenaqmOKfnjrJV-hTUpHQghtOtYQeY9WXIhWdYKsETziML3CiNN8hngw0eE8h33KEHDwOXoH-BzBeZvB4f6CT8YefIBqBBODD3tsrIURolnmNl5SNiUsx9nmOQJOBbOHT-jjYMYEm1t9QH-efvzevlS7X88_t4-7yvJW5KoR5UDeNo2wnDDbKGepdHL5hKthoIPhA7COSk6t6zkoJQo09J1rlFAD4w_o6zX3HKe_M6SsTz6V80YTYJqTZlIoxrtWyoKyK2rjlFKEQZ-jP5l40ZToxbA-6sWwXgxr0upiuCx9ueXP_Qnc28p_nwX4fgWgfPnqIS4ZEGwRGMFm7Sb_Xv4_dJWNkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768239577</pqid></control><display><type>article</type><title>A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search</title><source>Alma/SFX Local Collection</source><creator>Xia, Kang ; Gao, Hao ; Liu, Cong ; Yuan, Jianan ; Sun, Jian ; Wang, Hui-Tian ; Xing, Dingyu</creator><creatorcontrib>Xia, Kang ; Gao, Hao ; Liu, Cong ; Yuan, Jianan ; Sun, Jian ; Wang, Hui-Tian ; Xing, Dingyu</creatorcontrib><description>[Display omitted]
Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly developed machine-learning accelerated crystal structure searching method, we designed a superhard tungsten nitride, h-WN6, which can be synthesized at pressure around 65 GPa and quenchable to ambient pressure. This h-WN6 is constructed with single-bonded armchair-like N6 rings and presents ionic-like features, which can be formulated as W2.4+N62.4−. It has a band gap of 1.6 eV at 0 GPa and exhibits an abnormal gap broadening behavior under pressure. Excitingly, this h-WN6 is found to be the hardest among transition metal nitrides known so far (Vickers hardness around 57 GPa) and also has a very high melting temperature (around 1,900 K). Additionally, the good gravimetric (3.1 kJ/g) and volumetric (28.0 kJ/cm3) energy densities make this nitrogen-rich compound a potential high-energy-density material. These predictions support the designing rules and may stimulate future experiments to synthesize superhard and high-energy-density material.</description><identifier>ISSN: 2095-9273</identifier><identifier>EISSN: 2095-9281</identifier><identifier>DOI: 10.1016/j.scib.2018.05.027</identifier><identifier>PMID: 36658960</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Machine-learning accelerated crystal structure searching method ; Superhard tungsten nitride ; Transition metal nitrides ; Tungsten nitride</subject><ispartof>Science bulletin, 2018-07, Vol.63 (13), p.817-824</ispartof><rights>2018 Science China Press</rights><rights>Copyright © 2018 Science China Press. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4692435446c302c48dc17d7209538ff1fa3fe291731cdb3e886c48fb9d4868f23</citedby><cites>FETCH-LOGICAL-c356t-4692435446c302c48dc17d7209538ff1fa3fe291731cdb3e886c48fb9d4868f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36658960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Kang</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Yuan, Jianan</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Wang, Hui-Tian</creatorcontrib><creatorcontrib>Xing, Dingyu</creatorcontrib><title>A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search</title><title>Science bulletin</title><addtitle>Sci Bull (Beijing)</addtitle><description>[Display omitted]
Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly developed machine-learning accelerated crystal structure searching method, we designed a superhard tungsten nitride, h-WN6, which can be synthesized at pressure around 65 GPa and quenchable to ambient pressure. This h-WN6 is constructed with single-bonded armchair-like N6 rings and presents ionic-like features, which can be formulated as W2.4+N62.4−. It has a band gap of 1.6 eV at 0 GPa and exhibits an abnormal gap broadening behavior under pressure. Excitingly, this h-WN6 is found to be the hardest among transition metal nitrides known so far (Vickers hardness around 57 GPa) and also has a very high melting temperature (around 1,900 K). Additionally, the good gravimetric (3.1 kJ/g) and volumetric (28.0 kJ/cm3) energy densities make this nitrogen-rich compound a potential high-energy-density material. These predictions support the designing rules and may stimulate future experiments to synthesize superhard and high-energy-density material.</description><subject>Machine-learning accelerated crystal structure searching method</subject><subject>Superhard tungsten nitride</subject><subject>Transition metal nitrides</subject><subject>Tungsten nitride</subject><issn>2095-9273</issn><issn>2095-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE2L2zAQhsXSsgnb_IEeio692NWHLcnQyxK6u4VAL-1ZyNI4UXDkVJIX8u8rk3SPe5qBeeZl5kHoMyU1JVR8O9bJ-r5mhKqatDVh8g6tGenaqmOKfnjrJV-hTUpHQghtOtYQeY9WXIhWdYKsETziML3CiNN8hngw0eE8h33KEHDwOXoH-BzBeZvB4f6CT8YefIBqBBODD3tsrIURolnmNl5SNiUsx9nmOQJOBbOHT-jjYMYEm1t9QH-efvzevlS7X88_t4-7yvJW5KoR5UDeNo2wnDDbKGepdHL5hKthoIPhA7COSk6t6zkoJQo09J1rlFAD4w_o6zX3HKe_M6SsTz6V80YTYJqTZlIoxrtWyoKyK2rjlFKEQZ-jP5l40ZToxbA-6sWwXgxr0upiuCx9ueXP_Qnc28p_nwX4fgWgfPnqIS4ZEGwRGMFm7Sb_Xv4_dJWNkg</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Xia, Kang</creator><creator>Gao, Hao</creator><creator>Liu, Cong</creator><creator>Yuan, Jianan</creator><creator>Sun, Jian</creator><creator>Wang, Hui-Tian</creator><creator>Xing, Dingyu</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180715</creationdate><title>A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search</title><author>Xia, Kang ; Gao, Hao ; Liu, Cong ; Yuan, Jianan ; Sun, Jian ; Wang, Hui-Tian ; Xing, Dingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4692435446c302c48dc17d7209538ff1fa3fe291731cdb3e886c48fb9d4868f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Machine-learning accelerated crystal structure searching method</topic><topic>Superhard tungsten nitride</topic><topic>Transition metal nitrides</topic><topic>Tungsten nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Kang</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Yuan, Jianan</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Wang, Hui-Tian</creatorcontrib><creatorcontrib>Xing, Dingyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Kang</au><au>Gao, Hao</au><au>Liu, Cong</au><au>Yuan, Jianan</au><au>Sun, Jian</au><au>Wang, Hui-Tian</au><au>Xing, Dingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search</atitle><jtitle>Science bulletin</jtitle><addtitle>Sci Bull (Beijing)</addtitle><date>2018-07-15</date><risdate>2018</risdate><volume>63</volume><issue>13</issue><spage>817</spage><epage>824</epage><pages>817-824</pages><issn>2095-9273</issn><eissn>2095-9281</eissn><abstract>[Display omitted]
Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly developed machine-learning accelerated crystal structure searching method, we designed a superhard tungsten nitride, h-WN6, which can be synthesized at pressure around 65 GPa and quenchable to ambient pressure. This h-WN6 is constructed with single-bonded armchair-like N6 rings and presents ionic-like features, which can be formulated as W2.4+N62.4−. It has a band gap of 1.6 eV at 0 GPa and exhibits an abnormal gap broadening behavior under pressure. Excitingly, this h-WN6 is found to be the hardest among transition metal nitrides known so far (Vickers hardness around 57 GPa) and also has a very high melting temperature (around 1,900 K). Additionally, the good gravimetric (3.1 kJ/g) and volumetric (28.0 kJ/cm3) energy densities make this nitrogen-rich compound a potential high-energy-density material. These predictions support the designing rules and may stimulate future experiments to synthesize superhard and high-energy-density material.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36658960</pmid><doi>10.1016/j.scib.2018.05.027</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9273 |
ispartof | Science bulletin, 2018-07, Vol.63 (13), p.817-824 |
issn | 2095-9273 2095-9281 |
language | eng |
recordid | cdi_proquest_miscellaneous_2768239577 |
source | Alma/SFX Local Collection |
subjects | Machine-learning accelerated crystal structure searching method Superhard tungsten nitride Transition metal nitrides Tungsten nitride |
title | A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20superhard%20tungsten%20nitride%20predicted%20by%20machine-learning%20accelerated%20crystal%20structure%20search&rft.jtitle=Science%20bulletin&rft.au=Xia,%20Kang&rft.date=2018-07-15&rft.volume=63&rft.issue=13&rft.spage=817&rft.epage=824&rft.pages=817-824&rft.issn=2095-9273&rft.eissn=2095-9281&rft_id=info:doi/10.1016/j.scib.2018.05.027&rft_dat=%3Cproquest_cross%3E2768239577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768239577&rft_id=info:pmid/36658960&rft_els_id=S2095927318302494&rfr_iscdi=true |