Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement

Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science bulletin 2019-03, Vol.64 (5), p.321-330
Hauptverfasser: Wang, Jian, Yang, Dinghui, Jing, Hao, Wu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 5
container_start_page 321
container_title Science bulletin
container_volume 64
creator Wang, Jian
Yang, Dinghui
Jing, Hao
Wu, Hao
description Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model.
doi_str_mv 10.1016/j.scib.2019.01.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2768235419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095927319300738</els_id><sourcerecordid>2768235419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4359b781677b4a5735e5f41ea8d79e7f3f0591c75e751ad1c7e878f05f5e16e83</originalsourceid><addsrcrecordid>eNp9kMFOxCAURYnROBP1B1wYlm6mQlugJG6McdRo4kbXhLavDhOgI7Rj_HupM7p0xc3jvpO8g9A5JRkllF-ts9iYOssJlRmhGcnpAZrnRLKFzCt6-JdFMUNnMa4JIbSUeUnEMZoVnDPJJJ8jtxytxZ96C10fHDZ-CyGa3uNaR2hxCsMKMPgIrraAn7R12uPO2AECdjCs-haP0fh3PHrzg4jabew0-DTpdxxwgI3VDTjwwyk66rSNcLZ_T9Db8u719mHx_HL_eHvzvGgKxodFWTBZi4pyIepSM1EwYF1JQVetkCC6oiNM0kYwEIzqNiWoRJWGHQPKoSpO0OWOuwn9xwhxUM7EBqzVHvoxqlzwKi9YSWWq5rtqE_oYA3RqE4zT4UtRoibTaq0m02oyrQhVyXRautjzx9pB-7fy6zUVrncFSFduDYSJAb6B1gRoBtX25j_-N5u8kJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768235419</pqid></control><display><type>article</type><title>Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement</title><source>Alma/SFX Local Collection</source><creator>Wang, Jian ; Yang, Dinghui ; Jing, Hao ; Wu, Hao</creator><creatorcontrib>Wang, Jian ; Yang, Dinghui ; Jing, Hao ; Wu, Hao</creatorcontrib><description>Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model.</description><identifier>ISSN: 2095-9273</identifier><identifier>EISSN: 2095-9281</identifier><identifier>DOI: 10.1016/j.scib.2019.01.021</identifier><identifier>PMID: 36659596</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Data assimilation ; Ensemble Kalman filter ; Full waveform inversion ; Uniform sampling without replacement</subject><ispartof>Science bulletin, 2019-03, Vol.64 (5), p.321-330</ispartof><rights>2019 Science China Press</rights><rights>Copyright © 2019 Science China Press. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4359b781677b4a5735e5f41ea8d79e7f3f0591c75e751ad1c7e878f05f5e16e83</citedby><cites>FETCH-LOGICAL-c356t-4359b781677b4a5735e5f41ea8d79e7f3f0591c75e751ad1c7e878f05f5e16e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36659596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yang, Dinghui</creatorcontrib><creatorcontrib>Jing, Hao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement</title><title>Science bulletin</title><addtitle>Sci Bull (Beijing)</addtitle><description>Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model.</description><subject>Data assimilation</subject><subject>Ensemble Kalman filter</subject><subject>Full waveform inversion</subject><subject>Uniform sampling without replacement</subject><issn>2095-9273</issn><issn>2095-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOxCAURYnROBP1B1wYlm6mQlugJG6McdRo4kbXhLavDhOgI7Rj_HupM7p0xc3jvpO8g9A5JRkllF-ts9iYOssJlRmhGcnpAZrnRLKFzCt6-JdFMUNnMa4JIbSUeUnEMZoVnDPJJJ8jtxytxZ96C10fHDZ-CyGa3uNaR2hxCsMKMPgIrraAn7R12uPO2AECdjCs-haP0fh3PHrzg4jabew0-DTpdxxwgI3VDTjwwyk66rSNcLZ_T9Db8u719mHx_HL_eHvzvGgKxodFWTBZi4pyIepSM1EwYF1JQVetkCC6oiNM0kYwEIzqNiWoRJWGHQPKoSpO0OWOuwn9xwhxUM7EBqzVHvoxqlzwKi9YSWWq5rtqE_oYA3RqE4zT4UtRoibTaq0m02oyrQhVyXRautjzx9pB-7fy6zUVrncFSFduDYSJAb6B1gRoBtX25j_-N5u8kJI</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Wang, Jian</creator><creator>Yang, Dinghui</creator><creator>Jing, Hao</creator><creator>Wu, Hao</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190315</creationdate><title>Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement</title><author>Wang, Jian ; Yang, Dinghui ; Jing, Hao ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4359b781677b4a5735e5f41ea8d79e7f3f0591c75e751ad1c7e878f05f5e16e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data assimilation</topic><topic>Ensemble Kalman filter</topic><topic>Full waveform inversion</topic><topic>Uniform sampling without replacement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yang, Dinghui</creatorcontrib><creatorcontrib>Jing, Hao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian</au><au>Yang, Dinghui</au><au>Jing, Hao</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement</atitle><jtitle>Science bulletin</jtitle><addtitle>Sci Bull (Beijing)</addtitle><date>2019-03-15</date><risdate>2019</risdate><volume>64</volume><issue>5</issue><spage>321</spage><epage>330</epage><pages>321-330</pages><issn>2095-9273</issn><eissn>2095-9281</eissn><abstract>Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36659596</pmid><doi>10.1016/j.scib.2019.01.021</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-9273
ispartof Science bulletin, 2019-03, Vol.64 (5), p.321-330
issn 2095-9273
2095-9281
language eng
recordid cdi_proquest_miscellaneous_2768235419
source Alma/SFX Local Collection
subjects Data assimilation
Ensemble Kalman filter
Full waveform inversion
Uniform sampling without replacement
title Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20waveform%20inversion%20based%20on%20the%20ensemble%20Kalman%20filter%20method%20using%20uniform%20sampling%20without%20replacement&rft.jtitle=Science%20bulletin&rft.au=Wang,%20Jian&rft.date=2019-03-15&rft.volume=64&rft.issue=5&rft.spage=321&rft.epage=330&rft.pages=321-330&rft.issn=2095-9273&rft.eissn=2095-9281&rft_id=info:doi/10.1016/j.scib.2019.01.021&rft_dat=%3Cproquest_cross%3E2768235419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768235419&rft_id=info:pmid/36659596&rft_els_id=S2095927319300738&rfr_iscdi=true