Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement
Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce imag...
Gespeichert in:
Veröffentlicht in: | Science bulletin 2019-03, Vol.64 (5), p.321-330 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 5 |
container_start_page | 321 |
container_title | Science bulletin |
container_volume | 64 |
creator | Wang, Jian Yang, Dinghui Jing, Hao Wu, Hao |
description | Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model. |
doi_str_mv | 10.1016/j.scib.2019.01.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2768235419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095927319300738</els_id><sourcerecordid>2768235419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4359b781677b4a5735e5f41ea8d79e7f3f0591c75e751ad1c7e878f05f5e16e83</originalsourceid><addsrcrecordid>eNp9kMFOxCAURYnROBP1B1wYlm6mQlugJG6McdRo4kbXhLavDhOgI7Rj_HupM7p0xc3jvpO8g9A5JRkllF-ts9iYOssJlRmhGcnpAZrnRLKFzCt6-JdFMUNnMa4JIbSUeUnEMZoVnDPJJJ8jtxytxZ96C10fHDZ-CyGa3uNaR2hxCsMKMPgIrraAn7R12uPO2AECdjCs-haP0fh3PHrzg4jabew0-DTpdxxwgI3VDTjwwyk66rSNcLZ_T9Db8u719mHx_HL_eHvzvGgKxodFWTBZi4pyIepSM1EwYF1JQVetkCC6oiNM0kYwEIzqNiWoRJWGHQPKoSpO0OWOuwn9xwhxUM7EBqzVHvoxqlzwKi9YSWWq5rtqE_oYA3RqE4zT4UtRoibTaq0m02oyrQhVyXRautjzx9pB-7fy6zUVrncFSFduDYSJAb6B1gRoBtX25j_-N5u8kJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768235419</pqid></control><display><type>article</type><title>Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement</title><source>Alma/SFX Local Collection</source><creator>Wang, Jian ; Yang, Dinghui ; Jing, Hao ; Wu, Hao</creator><creatorcontrib>Wang, Jian ; Yang, Dinghui ; Jing, Hao ; Wu, Hao</creatorcontrib><description>Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model.</description><identifier>ISSN: 2095-9273</identifier><identifier>EISSN: 2095-9281</identifier><identifier>DOI: 10.1016/j.scib.2019.01.021</identifier><identifier>PMID: 36659596</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Data assimilation ; Ensemble Kalman filter ; Full waveform inversion ; Uniform sampling without replacement</subject><ispartof>Science bulletin, 2019-03, Vol.64 (5), p.321-330</ispartof><rights>2019 Science China Press</rights><rights>Copyright © 2019 Science China Press. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4359b781677b4a5735e5f41ea8d79e7f3f0591c75e751ad1c7e878f05f5e16e83</citedby><cites>FETCH-LOGICAL-c356t-4359b781677b4a5735e5f41ea8d79e7f3f0591c75e751ad1c7e878f05f5e16e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36659596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yang, Dinghui</creatorcontrib><creatorcontrib>Jing, Hao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement</title><title>Science bulletin</title><addtitle>Sci Bull (Beijing)</addtitle><description>Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model.</description><subject>Data assimilation</subject><subject>Ensemble Kalman filter</subject><subject>Full waveform inversion</subject><subject>Uniform sampling without replacement</subject><issn>2095-9273</issn><issn>2095-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOxCAURYnROBP1B1wYlm6mQlugJG6McdRo4kbXhLavDhOgI7Rj_HupM7p0xc3jvpO8g9A5JRkllF-ts9iYOssJlRmhGcnpAZrnRLKFzCt6-JdFMUNnMa4JIbSUeUnEMZoVnDPJJJ8jtxytxZ96C10fHDZ-CyGa3uNaR2hxCsMKMPgIrraAn7R12uPO2AECdjCs-haP0fh3PHrzg4jabew0-DTpdxxwgI3VDTjwwyk66rSNcLZ_T9Db8u719mHx_HL_eHvzvGgKxodFWTBZi4pyIepSM1EwYF1JQVetkCC6oiNM0kYwEIzqNiWoRJWGHQPKoSpO0OWOuwn9xwhxUM7EBqzVHvoxqlzwKi9YSWWq5rtqE_oYA3RqE4zT4UtRoibTaq0m02oyrQhVyXRautjzx9pB-7fy6zUVrncFSFduDYSJAb6B1gRoBtX25j_-N5u8kJI</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Wang, Jian</creator><creator>Yang, Dinghui</creator><creator>Jing, Hao</creator><creator>Wu, Hao</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190315</creationdate><title>Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement</title><author>Wang, Jian ; Yang, Dinghui ; Jing, Hao ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4359b781677b4a5735e5f41ea8d79e7f3f0591c75e751ad1c7e878f05f5e16e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data assimilation</topic><topic>Ensemble Kalman filter</topic><topic>Full waveform inversion</topic><topic>Uniform sampling without replacement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yang, Dinghui</creatorcontrib><creatorcontrib>Jing, Hao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian</au><au>Yang, Dinghui</au><au>Jing, Hao</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement</atitle><jtitle>Science bulletin</jtitle><addtitle>Sci Bull (Beijing)</addtitle><date>2019-03-15</date><risdate>2019</risdate><volume>64</volume><issue>5</issue><spage>321</spage><epage>330</epage><pages>321-330</pages><issn>2095-9273</issn><eissn>2095-9281</eissn><abstract>Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36659596</pmid><doi>10.1016/j.scib.2019.01.021</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9273 |
ispartof | Science bulletin, 2019-03, Vol.64 (5), p.321-330 |
issn | 2095-9273 2095-9281 |
language | eng |
recordid | cdi_proquest_miscellaneous_2768235419 |
source | Alma/SFX Local Collection |
subjects | Data assimilation Ensemble Kalman filter Full waveform inversion Uniform sampling without replacement |
title | Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20waveform%20inversion%20based%20on%20the%20ensemble%20Kalman%20filter%20method%20using%20uniform%20sampling%20without%20replacement&rft.jtitle=Science%20bulletin&rft.au=Wang,%20Jian&rft.date=2019-03-15&rft.volume=64&rft.issue=5&rft.spage=321&rft.epage=330&rft.pages=321-330&rft.issn=2095-9273&rft.eissn=2095-9281&rft_id=info:doi/10.1016/j.scib.2019.01.021&rft_dat=%3Cproquest_cross%3E2768235419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768235419&rft_id=info:pmid/36659596&rft_els_id=S2095927319300738&rfr_iscdi=true |