Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy

Abstract Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2023-03, Vol.24 (2)
Hauptverfasser: Guo, Binjie, Zheng, Hanyu, Jiang, Haohan, Li, Xiaodan, Guan, Naiyu, Zuo, Yanming, Zhang, Yicheng, Yang, Hengfu, Wang, Xuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Briefings in bioinformatics
container_volume 24
creator Guo, Binjie
Zheng, Hanyu
Jiang, Haohan
Li, Xiaodan
Guan, Naiyu
Zuo, Yanming
Zhang, Yicheng
Yang, Hengfu
Wang, Xuhua
description Abstract Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy. Graphical Abstract Graphical Abstract
doi_str_mv 10.1093/bib/bbac628
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2768231327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac628</oup_id><sourcerecordid>3049109630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a7e2350ec00e48901d7ac60a7390109862e92f4467a36c1124c7ba387fe28e393</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMovlfupSCIINWbxzTtUsQXCG50XdL0ViNtUpN0YLb-cjPO6MKFq9wkX869J4eQIwoXFCp-2ZjmsmmULli5QXapkDIXMBOby7qQ-UwUfIfshfAOwECWdJvs8KIoGcBsl3ze2DdlNbaZdsPoJtvmo3cRjc0aY1tjXzPVdcaauMhGj63R0bh0t8g8pn1AG5fMz5th6qMZXKv6zNjO-UF943OjMpU64Nz10_JE-UUWolcRXxcHZKtTfcDD9bpPXm5vnq_v88enu4frq8dcc1HGXElkfAaoAVCUFdBWJs-gJE81VGXBsGKdSJYVLzSlTGjZKF7KDlmJvOL75Gylm4b9mDDEejBBY98ri24KNZPpUzjlTCb05A_67iZv03Q1B1GldgWHRJ2vKO1dCB67evRmSNZqCvUymjpFU6-jSfTxWnNqBmx_2Z8sEnC6Atw0_qv0BQFmmdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049109630</pqid></control><display><type>article</type><title>Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy</title><source>Oxford Journals Open Access Collection</source><creator>Guo, Binjie ; Zheng, Hanyu ; Jiang, Haohan ; Li, Xiaodan ; Guan, Naiyu ; Zuo, Yanming ; Zhang, Yicheng ; Yang, Hengfu ; Wang, Xuhua</creator><creatorcontrib>Guo, Binjie ; Zheng, Hanyu ; Jiang, Haohan ; Li, Xiaodan ; Guan, Naiyu ; Zuo, Yanming ; Zhang, Yicheng ; Yang, Hengfu ; Wang, Xuhua</creatorcontrib><description>Abstract Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac628</identifier><identifier>PMID: 36682005</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Accuracy ; Affinity ; Amino acid sequence ; Binding ; Machine Learning ; Mathematical models ; Models, Theoretical ; Predictions ; Protein Binding ; Protein structure ; Proteins ; Proteins - chemistry</subject><ispartof>Briefings in bioinformatics, 2023-03, Vol.24 (2)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-a7e2350ec00e48901d7ac60a7390109862e92f4467a36c1124c7ba387fe28e393</citedby><cites>FETCH-LOGICAL-c348t-a7e2350ec00e48901d7ac60a7390109862e92f4467a36c1124c7ba387fe28e393</cites><orcidid>0000-0002-4565-787X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac628$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36682005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Binjie</creatorcontrib><creatorcontrib>Zheng, Hanyu</creatorcontrib><creatorcontrib>Jiang, Haohan</creatorcontrib><creatorcontrib>Li, Xiaodan</creatorcontrib><creatorcontrib>Guan, Naiyu</creatorcontrib><creatorcontrib>Zuo, Yanming</creatorcontrib><creatorcontrib>Zhang, Yicheng</creatorcontrib><creatorcontrib>Yang, Hengfu</creatorcontrib><creatorcontrib>Wang, Xuhua</creatorcontrib><title>Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy. Graphical Abstract Graphical Abstract</description><subject>Accuracy</subject><subject>Affinity</subject><subject>Amino acid sequence</subject><subject>Binding</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Predictions</subject><subject>Protein Binding</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMovlfupSCIINWbxzTtUsQXCG50XdL0ViNtUpN0YLb-cjPO6MKFq9wkX869J4eQIwoXFCp-2ZjmsmmULli5QXapkDIXMBOby7qQ-UwUfIfshfAOwECWdJvs8KIoGcBsl3ze2DdlNbaZdsPoJtvmo3cRjc0aY1tjXzPVdcaauMhGj63R0bh0t8g8pn1AG5fMz5th6qMZXKv6zNjO-UF943OjMpU64Nz10_JE-UUWolcRXxcHZKtTfcDD9bpPXm5vnq_v88enu4frq8dcc1HGXElkfAaoAVCUFdBWJs-gJE81VGXBsGKdSJYVLzSlTGjZKF7KDlmJvOL75Gylm4b9mDDEejBBY98ri24KNZPpUzjlTCb05A_67iZv03Q1B1GldgWHRJ2vKO1dCB67evRmSNZqCvUymjpFU6-jSfTxWnNqBmx_2Z8sEnC6Atw0_qv0BQFmmdo</recordid><startdate>20230319</startdate><enddate>20230319</enddate><creator>Guo, Binjie</creator><creator>Zheng, Hanyu</creator><creator>Jiang, Haohan</creator><creator>Li, Xiaodan</creator><creator>Guan, Naiyu</creator><creator>Zuo, Yanming</creator><creator>Zhang, Yicheng</creator><creator>Yang, Hengfu</creator><creator>Wang, Xuhua</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4565-787X</orcidid></search><sort><creationdate>20230319</creationdate><title>Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy</title><author>Guo, Binjie ; Zheng, Hanyu ; Jiang, Haohan ; Li, Xiaodan ; Guan, Naiyu ; Zuo, Yanming ; Zhang, Yicheng ; Yang, Hengfu ; Wang, Xuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a7e2350ec00e48901d7ac60a7390109862e92f4467a36c1124c7ba387fe28e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Affinity</topic><topic>Amino acid sequence</topic><topic>Binding</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Predictions</topic><topic>Protein Binding</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Binjie</creatorcontrib><creatorcontrib>Zheng, Hanyu</creatorcontrib><creatorcontrib>Jiang, Haohan</creatorcontrib><creatorcontrib>Li, Xiaodan</creatorcontrib><creatorcontrib>Guan, Naiyu</creatorcontrib><creatorcontrib>Zuo, Yanming</creatorcontrib><creatorcontrib>Zhang, Yicheng</creatorcontrib><creatorcontrib>Yang, Hengfu</creatorcontrib><creatorcontrib>Wang, Xuhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Binjie</au><au>Zheng, Hanyu</au><au>Jiang, Haohan</au><au>Li, Xiaodan</au><au>Guan, Naiyu</au><au>Zuo, Yanming</au><au>Zhang, Yicheng</au><au>Yang, Hengfu</au><au>Wang, Xuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2023-03-19</date><risdate>2023</risdate><volume>24</volume><issue>2</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy. Graphical Abstract Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36682005</pmid><doi>10.1093/bib/bbac628</doi><orcidid>https://orcid.org/0000-0002-4565-787X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2023-03, Vol.24 (2)
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2768231327
source Oxford Journals Open Access Collection
subjects Accuracy
Affinity
Amino acid sequence
Binding
Machine Learning
Mathematical models
Models, Theoretical
Predictions
Protein Binding
Protein structure
Proteins
Proteins - chemistry
title Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20compound-protein%20binding%20affinity%20prediction%20by%20representing%20protein%20multimodal%20information%20via%20a%20coevolutionary%20strategy&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Guo,%20Binjie&rft.date=2023-03-19&rft.volume=24&rft.issue=2&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac628&rft_dat=%3Cproquest_TOX%3E3049109630%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049109630&rft_id=info:pmid/36682005&rft_oup_id=10.1093/bib/bbac628&rfr_iscdi=true