Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy
Abstract Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitat...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2023-03, Vol.24 (2) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 24 |
creator | Guo, Binjie Zheng, Hanyu Jiang, Haohan Li, Xiaodan Guan, Naiyu Zuo, Yanming Zhang, Yicheng Yang, Hengfu Wang, Xuhua |
description | Abstract
Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.
Graphical Abstract
Graphical Abstract |
doi_str_mv | 10.1093/bib/bbac628 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2768231327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac628</oup_id><sourcerecordid>3049109630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a7e2350ec00e48901d7ac60a7390109862e92f4467a36c1124c7ba387fe28e393</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMovlfupSCIINWbxzTtUsQXCG50XdL0ViNtUpN0YLb-cjPO6MKFq9wkX869J4eQIwoXFCp-2ZjmsmmULli5QXapkDIXMBOby7qQ-UwUfIfshfAOwECWdJvs8KIoGcBsl3ze2DdlNbaZdsPoJtvmo3cRjc0aY1tjXzPVdcaauMhGj63R0bh0t8g8pn1AG5fMz5th6qMZXKv6zNjO-UF943OjMpU64Nz10_JE-UUWolcRXxcHZKtTfcDD9bpPXm5vnq_v88enu4frq8dcc1HGXElkfAaoAVCUFdBWJs-gJE81VGXBsGKdSJYVLzSlTGjZKF7KDlmJvOL75Gylm4b9mDDEejBBY98ri24KNZPpUzjlTCb05A_67iZv03Q1B1GldgWHRJ2vKO1dCB67evRmSNZqCvUymjpFU6-jSfTxWnNqBmx_2Z8sEnC6Atw0_qv0BQFmmdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049109630</pqid></control><display><type>article</type><title>Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy</title><source>Oxford Journals Open Access Collection</source><creator>Guo, Binjie ; Zheng, Hanyu ; Jiang, Haohan ; Li, Xiaodan ; Guan, Naiyu ; Zuo, Yanming ; Zhang, Yicheng ; Yang, Hengfu ; Wang, Xuhua</creator><creatorcontrib>Guo, Binjie ; Zheng, Hanyu ; Jiang, Haohan ; Li, Xiaodan ; Guan, Naiyu ; Zuo, Yanming ; Zhang, Yicheng ; Yang, Hengfu ; Wang, Xuhua</creatorcontrib><description>Abstract
Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.
Graphical Abstract
Graphical Abstract</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac628</identifier><identifier>PMID: 36682005</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Accuracy ; Affinity ; Amino acid sequence ; Binding ; Machine Learning ; Mathematical models ; Models, Theoretical ; Predictions ; Protein Binding ; Protein structure ; Proteins ; Proteins - chemistry</subject><ispartof>Briefings in bioinformatics, 2023-03, Vol.24 (2)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-a7e2350ec00e48901d7ac60a7390109862e92f4467a36c1124c7ba387fe28e393</citedby><cites>FETCH-LOGICAL-c348t-a7e2350ec00e48901d7ac60a7390109862e92f4467a36c1124c7ba387fe28e393</cites><orcidid>0000-0002-4565-787X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac628$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36682005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Binjie</creatorcontrib><creatorcontrib>Zheng, Hanyu</creatorcontrib><creatorcontrib>Jiang, Haohan</creatorcontrib><creatorcontrib>Li, Xiaodan</creatorcontrib><creatorcontrib>Guan, Naiyu</creatorcontrib><creatorcontrib>Zuo, Yanming</creatorcontrib><creatorcontrib>Zhang, Yicheng</creatorcontrib><creatorcontrib>Yang, Hengfu</creatorcontrib><creatorcontrib>Wang, Xuhua</creatorcontrib><title>Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract
Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.
Graphical Abstract
Graphical Abstract</description><subject>Accuracy</subject><subject>Affinity</subject><subject>Amino acid sequence</subject><subject>Binding</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Predictions</subject><subject>Protein Binding</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMovlfupSCIINWbxzTtUsQXCG50XdL0ViNtUpN0YLb-cjPO6MKFq9wkX869J4eQIwoXFCp-2ZjmsmmULli5QXapkDIXMBOby7qQ-UwUfIfshfAOwECWdJvs8KIoGcBsl3ze2DdlNbaZdsPoJtvmo3cRjc0aY1tjXzPVdcaauMhGj63R0bh0t8g8pn1AG5fMz5th6qMZXKv6zNjO-UF943OjMpU64Nz10_JE-UUWolcRXxcHZKtTfcDD9bpPXm5vnq_v88enu4frq8dcc1HGXElkfAaoAVCUFdBWJs-gJE81VGXBsGKdSJYVLzSlTGjZKF7KDlmJvOL75Gylm4b9mDDEejBBY98ri24KNZPpUzjlTCb05A_67iZv03Q1B1GldgWHRJ2vKO1dCB67evRmSNZqCvUymjpFU6-jSfTxWnNqBmx_2Z8sEnC6Atw0_qv0BQFmmdo</recordid><startdate>20230319</startdate><enddate>20230319</enddate><creator>Guo, Binjie</creator><creator>Zheng, Hanyu</creator><creator>Jiang, Haohan</creator><creator>Li, Xiaodan</creator><creator>Guan, Naiyu</creator><creator>Zuo, Yanming</creator><creator>Zhang, Yicheng</creator><creator>Yang, Hengfu</creator><creator>Wang, Xuhua</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4565-787X</orcidid></search><sort><creationdate>20230319</creationdate><title>Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy</title><author>Guo, Binjie ; Zheng, Hanyu ; Jiang, Haohan ; Li, Xiaodan ; Guan, Naiyu ; Zuo, Yanming ; Zhang, Yicheng ; Yang, Hengfu ; Wang, Xuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a7e2350ec00e48901d7ac60a7390109862e92f4467a36c1124c7ba387fe28e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Affinity</topic><topic>Amino acid sequence</topic><topic>Binding</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Predictions</topic><topic>Protein Binding</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Binjie</creatorcontrib><creatorcontrib>Zheng, Hanyu</creatorcontrib><creatorcontrib>Jiang, Haohan</creatorcontrib><creatorcontrib>Li, Xiaodan</creatorcontrib><creatorcontrib>Guan, Naiyu</creatorcontrib><creatorcontrib>Zuo, Yanming</creatorcontrib><creatorcontrib>Zhang, Yicheng</creatorcontrib><creatorcontrib>Yang, Hengfu</creatorcontrib><creatorcontrib>Wang, Xuhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Binjie</au><au>Zheng, Hanyu</au><au>Jiang, Haohan</au><au>Li, Xiaodan</au><au>Guan, Naiyu</au><au>Zuo, Yanming</au><au>Zhang, Yicheng</au><au>Yang, Hengfu</au><au>Wang, Xuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2023-03-19</date><risdate>2023</risdate><volume>24</volume><issue>2</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract
Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.
Graphical Abstract
Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36682005</pmid><doi>10.1093/bib/bbac628</doi><orcidid>https://orcid.org/0000-0002-4565-787X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2023-03, Vol.24 (2) |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_proquest_miscellaneous_2768231327 |
source | Oxford Journals Open Access Collection |
subjects | Accuracy Affinity Amino acid sequence Binding Machine Learning Mathematical models Models, Theoretical Predictions Protein Binding Protein structure Proteins Proteins - chemistry |
title | Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20compound-protein%20binding%20affinity%20prediction%20by%20representing%20protein%20multimodal%20information%20via%20a%20coevolutionary%20strategy&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Guo,%20Binjie&rft.date=2023-03-19&rft.volume=24&rft.issue=2&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac628&rft_dat=%3Cproquest_TOX%3E3049109630%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049109630&rft_id=info:pmid/36682005&rft_oup_id=10.1093/bib/bbac628&rfr_iscdi=true |