Parallel restricted maximum likelihood estimation for linear models with a dense exogenous matrix

Restricted maximum likelihood (REML) estimation of variance–covariance matrices is an optimization problem that has both scientific and industrial applications. Parallel REML gradient algorithms are presented and compared for linear models whose covariance matrix is large, sparse and possibly unstru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing 2002-02, Vol.28 (2), p.343-353
1. Verfasser: Malard, Joël M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 2
container_start_page 343
container_title Parallel computing
container_volume 28
creator Malard, Joël M.
description Restricted maximum likelihood (REML) estimation of variance–covariance matrices is an optimization problem that has both scientific and industrial applications. Parallel REML gradient algorithms are presented and compared for linear models whose covariance matrix is large, sparse and possibly unstructured. These algorithms are implemented using publicly available toolkits and demonstrate that REML estimates of large, sparse covariance matrices can be computed efficiently on multicomputers with hundreds of processors by using an effective mixture of data distributions together with a mixture of dense and sparse linear algebra kernels.
doi_str_mv 10.1016/S0167-8191(01)00143-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27676817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167819101001430</els_id><sourcerecordid>27676817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3cab13162fe38aec7e3aa67b6a6f4ba1b5451b5a71fdf1f8b93d33cd394f3f8e3</originalsourceid><addsrcrecordid>eNqFUMtKBDEQDKLg-vgEISfRw2iymU1mTyKLLxAU1HPoSToazUzWZFbXvzfrileh6T50VVFVhBxwdsIZl6cPZamq4VN-xPgxY7wWFdsgI96ocaWEkJtk9AfZJjs5vzLGZN2wEYF7SBACBpowD8mbAS3tYOm7RUeDf8PgX2K0tDx9B4OPPXUxlU-PkGgXLYZMP_3wQoFa7DNSXMZn7OMiF5kiuNwjWw5Cxv3fu0ueLi8eZ9fV7d3Vzez8tjJCNEMlDLRccDl2KBpAo1AASNVKkK5ugbeTelIWKO6s465pp8IKYayY1k64BsUuOVzrzlN8XxS_uvPZYAjQY3Gjx0oq2XBVgJM10KSYc0Kn56lkS1-aM70qVP8UqldtaVZmVahmhXe25pXI-OEx6Ww89gatT2gGbaP_R-EbCxqAEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27676817</pqid></control><display><type>article</type><title>Parallel restricted maximum likelihood estimation for linear models with a dense exogenous matrix</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Malard, Joël M.</creator><creatorcontrib>Malard, Joël M.</creatorcontrib><description>Restricted maximum likelihood (REML) estimation of variance–covariance matrices is an optimization problem that has both scientific and industrial applications. Parallel REML gradient algorithms are presented and compared for linear models whose covariance matrix is large, sparse and possibly unstructured. These algorithms are implemented using publicly available toolkits and demonstrate that REML estimates of large, sparse covariance matrices can be computed efficiently on multicomputers with hundreds of processors by using an effective mixture of data distributions together with a mixture of dense and sparse linear algebra kernels.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/S0167-8191(01)00143-0</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Covariance matrix estimation ; Linear models ; Numerical optimization ; Parallel computing ; Restricted maximum likelihood</subject><ispartof>Parallel computing, 2002-02, Vol.28 (2), p.343-353</ispartof><rights>2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3cab13162fe38aec7e3aa67b6a6f4ba1b5451b5a71fdf1f8b93d33cd394f3f8e3</citedby><cites>FETCH-LOGICAL-c338t-3cab13162fe38aec7e3aa67b6a6f4ba1b5451b5a71fdf1f8b93d33cd394f3f8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-8191(01)00143-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Malard, Joël M.</creatorcontrib><title>Parallel restricted maximum likelihood estimation for linear models with a dense exogenous matrix</title><title>Parallel computing</title><description>Restricted maximum likelihood (REML) estimation of variance–covariance matrices is an optimization problem that has both scientific and industrial applications. Parallel REML gradient algorithms are presented and compared for linear models whose covariance matrix is large, sparse and possibly unstructured. These algorithms are implemented using publicly available toolkits and demonstrate that REML estimates of large, sparse covariance matrices can be computed efficiently on multicomputers with hundreds of processors by using an effective mixture of data distributions together with a mixture of dense and sparse linear algebra kernels.</description><subject>Covariance matrix estimation</subject><subject>Linear models</subject><subject>Numerical optimization</subject><subject>Parallel computing</subject><subject>Restricted maximum likelihood</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKBDEQDKLg-vgEISfRw2iymU1mTyKLLxAU1HPoSToazUzWZFbXvzfrileh6T50VVFVhBxwdsIZl6cPZamq4VN-xPgxY7wWFdsgI96ocaWEkJtk9AfZJjs5vzLGZN2wEYF7SBACBpowD8mbAS3tYOm7RUeDf8PgX2K0tDx9B4OPPXUxlU-PkGgXLYZMP_3wQoFa7DNSXMZn7OMiF5kiuNwjWw5Cxv3fu0ueLi8eZ9fV7d3Vzez8tjJCNEMlDLRccDl2KBpAo1AASNVKkK5ugbeTelIWKO6s465pp8IKYayY1k64BsUuOVzrzlN8XxS_uvPZYAjQY3Gjx0oq2XBVgJM10KSYc0Kn56lkS1-aM70qVP8UqldtaVZmVahmhXe25pXI-OEx6Ww89gatT2gGbaP_R-EbCxqAEw</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Malard, Joël M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020201</creationdate><title>Parallel restricted maximum likelihood estimation for linear models with a dense exogenous matrix</title><author>Malard, Joël M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3cab13162fe38aec7e3aa67b6a6f4ba1b5451b5a71fdf1f8b93d33cd394f3f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Covariance matrix estimation</topic><topic>Linear models</topic><topic>Numerical optimization</topic><topic>Parallel computing</topic><topic>Restricted maximum likelihood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malard, Joël M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malard, Joël M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel restricted maximum likelihood estimation for linear models with a dense exogenous matrix</atitle><jtitle>Parallel computing</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>28</volume><issue>2</issue><spage>343</spage><epage>353</epage><pages>343-353</pages><issn>0167-8191</issn><eissn>1872-7336</eissn><abstract>Restricted maximum likelihood (REML) estimation of variance–covariance matrices is an optimization problem that has both scientific and industrial applications. Parallel REML gradient algorithms are presented and compared for linear models whose covariance matrix is large, sparse and possibly unstructured. These algorithms are implemented using publicly available toolkits and demonstrate that REML estimates of large, sparse covariance matrices can be computed efficiently on multicomputers with hundreds of processors by using an effective mixture of data distributions together with a mixture of dense and sparse linear algebra kernels.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-8191(01)00143-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8191
ispartof Parallel computing, 2002-02, Vol.28 (2), p.343-353
issn 0167-8191
1872-7336
language eng
recordid cdi_proquest_miscellaneous_27676817
source Elsevier ScienceDirect Journals Complete
subjects Covariance matrix estimation
Linear models
Numerical optimization
Parallel computing
Restricted maximum likelihood
title Parallel restricted maximum likelihood estimation for linear models with a dense exogenous matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20restricted%20maximum%20likelihood%20estimation%20for%20linear%20models%20with%20a%20dense%20exogenous%20matrix&rft.jtitle=Parallel%20computing&rft.au=Malard,%20Jo%C3%ABl%20M.&rft.date=2002-02-01&rft.volume=28&rft.issue=2&rft.spage=343&rft.epage=353&rft.pages=343-353&rft.issn=0167-8191&rft.eissn=1872-7336&rft_id=info:doi/10.1016/S0167-8191(01)00143-0&rft_dat=%3Cproquest_cross%3E27676817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27676817&rft_id=info:pmid/&rft_els_id=S0167819101001430&rfr_iscdi=true