Regression on feature projections

This paper describes a machine learning method, called Regression on Feature Projections (RFP), for predicting a real-valued target feature, given the values of multiple predictive features. In RFP training is based on simply storing the projections of the training instances on each feature separate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2000-06, Vol.13 (4), p.207-214
Hauptverfasser: Altay Guvenir, H., Uysal, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 4
container_start_page 207
container_title Knowledge-based systems
container_volume 13
creator Altay Guvenir, H.
Uysal, I.
description This paper describes a machine learning method, called Regression on Feature Projections (RFP), for predicting a real-valued target feature, given the values of multiple predictive features. In RFP training is based on simply storing the projections of the training instances on each feature separately. Prediction of the target value for a query point is obtained through two averaging procedures executed sequentially. The first averaging process is to find the individual predictions of features by using the K-Nearest Neighbor (KNN) algorithm. The second averaging process combines the predictions of all features. During the first averaging step, each feature is associated with a weight in order to determine the prediction ability of the feature at the local query point. The weights, found for each local query point, are used in the second prediction step and enforce the method to have an adaptive or context-sensitive nature. We have compared RFP with KNN and the rule based-regression algorithms. Results on real data sets show that RFP achieves better or comparable accuracy and is faster than both KNN and Rule-based regression algorithms.
doi_str_mv 10.1016/S0950-7051(00)00060-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27674885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705100000605</els_id><sourcerecordid>27674885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-40cc4bf1a8e0d8cafddcd78605dc550311408a77d340c3024ed17f1a99d829a33</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMoWFd_grC-iD5EJ03TpE8iizdYELw8h5hMJUu3XZNW2H9vuhVfhYGB4TtnOIeQUwZXDFh5_QqVACpBsAuASwAogYo9kjElcyoLqPZJ9occkqMYVwnKc6YycvaCnwFj9F07T1Oj6YeA803oVmj7dI3H5KA2TcST3z0j7_d3b4tHunx-eFrcLqnlSvS0AGuLj5oZheCUNbVz1klVgnBWCOCMFaCMlI4nkkNeoGMy4VXlVF4ZzmfkfPJNv78GjL1e-2ixaUyL3RB1LktZKCUSKCbQhi7GgLXeBL82YasZ6LEQvStEj2k1gN4VokfdzaTDlOLbY9DRemwtOh9SVu06_4_DD1TDZpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27674885</pqid></control><display><type>article</type><title>Regression on feature projections</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Altay Guvenir, H. ; Uysal, I.</creator><creatorcontrib>Altay Guvenir, H. ; Uysal, I.</creatorcontrib><description>This paper describes a machine learning method, called Regression on Feature Projections (RFP), for predicting a real-valued target feature, given the values of multiple predictive features. In RFP training is based on simply storing the projections of the training instances on each feature separately. Prediction of the target value for a query point is obtained through two averaging procedures executed sequentially. The first averaging process is to find the individual predictions of features by using the K-Nearest Neighbor (KNN) algorithm. The second averaging process combines the predictions of all features. During the first averaging step, each feature is associated with a weight in order to determine the prediction ability of the feature at the local query point. The weights, found for each local query point, are used in the second prediction step and enforce the method to have an adaptive or context-sensitive nature. We have compared RFP with KNN and the rule based-regression algorithms. Results on real data sets show that RFP achieves better or comparable accuracy and is faster than both KNN and Rule-based regression algorithms.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/S0950-7051(00)00060-5</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Feature projections ; Function approximation ; Regression</subject><ispartof>Knowledge-based systems, 2000-06, Vol.13 (4), p.207-214</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-40cc4bf1a8e0d8cafddcd78605dc550311408a77d340c3024ed17f1a99d829a33</citedby><cites>FETCH-LOGICAL-c385t-40cc4bf1a8e0d8cafddcd78605dc550311408a77d340c3024ed17f1a99d829a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0950-7051(00)00060-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Altay Guvenir, H.</creatorcontrib><creatorcontrib>Uysal, I.</creatorcontrib><title>Regression on feature projections</title><title>Knowledge-based systems</title><description>This paper describes a machine learning method, called Regression on Feature Projections (RFP), for predicting a real-valued target feature, given the values of multiple predictive features. In RFP training is based on simply storing the projections of the training instances on each feature separately. Prediction of the target value for a query point is obtained through two averaging procedures executed sequentially. The first averaging process is to find the individual predictions of features by using the K-Nearest Neighbor (KNN) algorithm. The second averaging process combines the predictions of all features. During the first averaging step, each feature is associated with a weight in order to determine the prediction ability of the feature at the local query point. The weights, found for each local query point, are used in the second prediction step and enforce the method to have an adaptive or context-sensitive nature. We have compared RFP with KNN and the rule based-regression algorithms. Results on real data sets show that RFP achieves better or comparable accuracy and is faster than both KNN and Rule-based regression algorithms.</description><subject>Feature projections</subject><subject>Function approximation</subject><subject>Regression</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMoWFd_grC-iD5EJ03TpE8iizdYELw8h5hMJUu3XZNW2H9vuhVfhYGB4TtnOIeQUwZXDFh5_QqVACpBsAuASwAogYo9kjElcyoLqPZJ9occkqMYVwnKc6YycvaCnwFj9F07T1Oj6YeA803oVmj7dI3H5KA2TcST3z0j7_d3b4tHunx-eFrcLqnlSvS0AGuLj5oZheCUNbVz1klVgnBWCOCMFaCMlI4nkkNeoGMy4VXlVF4ZzmfkfPJNv78GjL1e-2ixaUyL3RB1LktZKCUSKCbQhi7GgLXeBL82YasZ6LEQvStEj2k1gN4VokfdzaTDlOLbY9DRemwtOh9SVu06_4_DD1TDZpo</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Altay Guvenir, H.</creator><creator>Uysal, I.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000601</creationdate><title>Regression on feature projections</title><author>Altay Guvenir, H. ; Uysal, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-40cc4bf1a8e0d8cafddcd78605dc550311408a77d340c3024ed17f1a99d829a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Feature projections</topic><topic>Function approximation</topic><topic>Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altay Guvenir, H.</creatorcontrib><creatorcontrib>Uysal, I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altay Guvenir, H.</au><au>Uysal, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regression on feature projections</atitle><jtitle>Knowledge-based systems</jtitle><date>2000-06-01</date><risdate>2000</risdate><volume>13</volume><issue>4</issue><spage>207</spage><epage>214</epage><pages>207-214</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>This paper describes a machine learning method, called Regression on Feature Projections (RFP), for predicting a real-valued target feature, given the values of multiple predictive features. In RFP training is based on simply storing the projections of the training instances on each feature separately. Prediction of the target value for a query point is obtained through two averaging procedures executed sequentially. The first averaging process is to find the individual predictions of features by using the K-Nearest Neighbor (KNN) algorithm. The second averaging process combines the predictions of all features. During the first averaging step, each feature is associated with a weight in order to determine the prediction ability of the feature at the local query point. The weights, found for each local query point, are used in the second prediction step and enforce the method to have an adaptive or context-sensitive nature. We have compared RFP with KNN and the rule based-regression algorithms. Results on real data sets show that RFP achieves better or comparable accuracy and is faster than both KNN and Rule-based regression algorithms.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0950-7051(00)00060-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2000-06, Vol.13 (4), p.207-214
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_27674885
source ScienceDirect Freedom Collection (Elsevier)
subjects Feature projections
Function approximation
Regression
title Regression on feature projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regression%20on%20feature%20projections&rft.jtitle=Knowledge-based%20systems&rft.au=Altay%20Guvenir,%20H.&rft.date=2000-06-01&rft.volume=13&rft.issue=4&rft.spage=207&rft.epage=214&rft.pages=207-214&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/S0950-7051(00)00060-5&rft_dat=%3Cproquest_cross%3E27674885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27674885&rft_id=info:pmid/&rft_els_id=S0950705100000605&rfr_iscdi=true