Partial words and a theorem of Fine and Wilf revisited

A word of length n over a finite alphabet A is a map from {0,…,n−1} into A. A partial word of length n over A is a partial map from {0,…,n−1} into A. In the latter case, elements of {0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2002-01, Vol.270 (1), p.401-419
Hauptverfasser: Blanchet-Sadri, F., Hegstrom, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 1
container_start_page 401
container_title Theoretical computer science
container_volume 270
creator Blanchet-Sadri, F.
Hegstrom, Robert A.
description A word of length n over a finite alphabet A is a map from {0,…,n−1} into A. A partial word of length n over A is a partial map from {0,…,n−1} into A. In the latter case, elements of {0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fundamental periodicity result on words due to Fine and Wilf to partial words with two or three holes. This study was initiated by Berstel and Boasson for partial words with one hole. Partial words are motivated by molecular biology.
doi_str_mv 10.1016/S0304-3975(00)00407-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27672863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397500004072</els_id><sourcerecordid>27672863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-e56853ae8dbbc7934954e79a7d6d2746a70b048b9e1cad1dc4637f8c3cd199873</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEn0UN10qT5OIksrgoLCioeQ5pMMdJt16S74r-3uxWvzmVgeN4X5iHklMIlBSqunoEBz5mW5TnABQAHmRd7ZEKV1HlRaL5PJn_IITlK6QOGKaWYEPFkYx9sk3110afMtj6zWf-OXcRl1tXZPLS4u76Fps4ibkIKPfpjclDbJuHJ756S1_nty-w-XzzePcxuFrnjJe1zLIUqmUXlq8pJzbguOUptpRe-kFxYCRVwVWmkznrqHRdM1sox56nWSrIpORt7V7H7XGPqzTIkh01jW-zWyRRSyEIJNoDlCLrYpRSxNqsYljZ-Gwpma8nsLJmtAgNgdpZMMeSuxxwOX2wCRpNcwNahDxFdb3wX_mn4AZNKbV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27672863</pqid></control><display><type>article</type><title>Partial words and a theorem of Fine and Wilf revisited</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Blanchet-Sadri, F. ; Hegstrom, Robert A.</creator><creatorcontrib>Blanchet-Sadri, F. ; Hegstrom, Robert A.</creatorcontrib><description>A word of length n over a finite alphabet A is a map from {0,…,n−1} into A. A partial word of length n over A is a partial map from {0,…,n−1} into A. In the latter case, elements of {0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fundamental periodicity result on words due to Fine and Wilf to partial words with two or three holes. This study was initiated by Berstel and Boasson for partial words with one hole. Partial words are motivated by molecular biology.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(00)00407-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Combinatorial problems ; Formal languages ; Words</subject><ispartof>Theoretical computer science, 2002-01, Vol.270 (1), p.401-419</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-e56853ae8dbbc7934954e79a7d6d2746a70b048b9e1cad1dc4637f8c3cd199873</citedby><cites>FETCH-LOGICAL-c451t-e56853ae8dbbc7934954e79a7d6d2746a70b048b9e1cad1dc4637f8c3cd199873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3975(00)00407-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Blanchet-Sadri, F.</creatorcontrib><creatorcontrib>Hegstrom, Robert A.</creatorcontrib><title>Partial words and a theorem of Fine and Wilf revisited</title><title>Theoretical computer science</title><description>A word of length n over a finite alphabet A is a map from {0,…,n−1} into A. A partial word of length n over A is a partial map from {0,…,n−1} into A. In the latter case, elements of {0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fundamental periodicity result on words due to Fine and Wilf to partial words with two or three holes. This study was initiated by Berstel and Boasson for partial words with one hole. Partial words are motivated by molecular biology.</description><subject>Combinatorial problems</subject><subject>Formal languages</subject><subject>Words</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEn0UN10qT5OIksrgoLCioeQ5pMMdJt16S74r-3uxWvzmVgeN4X5iHklMIlBSqunoEBz5mW5TnABQAHmRd7ZEKV1HlRaL5PJn_IITlK6QOGKaWYEPFkYx9sk3110afMtj6zWf-OXcRl1tXZPLS4u76Fps4ibkIKPfpjclDbJuHJ756S1_nty-w-XzzePcxuFrnjJe1zLIUqmUXlq8pJzbguOUptpRe-kFxYCRVwVWmkznrqHRdM1sox56nWSrIpORt7V7H7XGPqzTIkh01jW-zWyRRSyEIJNoDlCLrYpRSxNqsYljZ-Gwpma8nsLJmtAgNgdpZMMeSuxxwOX2wCRpNcwNahDxFdb3wX_mn4AZNKbV0</recordid><startdate>20020106</startdate><enddate>20020106</enddate><creator>Blanchet-Sadri, F.</creator><creator>Hegstrom, Robert A.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020106</creationdate><title>Partial words and a theorem of Fine and Wilf revisited</title><author>Blanchet-Sadri, F. ; Hegstrom, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-e56853ae8dbbc7934954e79a7d6d2746a70b048b9e1cad1dc4637f8c3cd199873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Combinatorial problems</topic><topic>Formal languages</topic><topic>Words</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanchet-Sadri, F.</creatorcontrib><creatorcontrib>Hegstrom, Robert A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanchet-Sadri, F.</au><au>Hegstrom, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial words and a theorem of Fine and Wilf revisited</atitle><jtitle>Theoretical computer science</jtitle><date>2002-01-06</date><risdate>2002</risdate><volume>270</volume><issue>1</issue><spage>401</spage><epage>419</epage><pages>401-419</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>A word of length n over a finite alphabet A is a map from {0,…,n−1} into A. A partial word of length n over A is a partial map from {0,…,n−1} into A. In the latter case, elements of {0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fundamental periodicity result on words due to Fine and Wilf to partial words with two or three holes. This study was initiated by Berstel and Boasson for partial words with one hole. Partial words are motivated by molecular biology.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(00)00407-2</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2002-01, Vol.270 (1), p.401-419
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_27672863
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Combinatorial problems
Formal languages
Words
title Partial words and a theorem of Fine and Wilf revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20words%20and%20a%20theorem%20of%20Fine%20and%20Wilf%20revisited&rft.jtitle=Theoretical%20computer%20science&rft.au=Blanchet-Sadri,%20F.&rft.date=2002-01-06&rft.volume=270&rft.issue=1&rft.spage=401&rft.epage=419&rft.pages=401-419&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/S0304-3975(00)00407-2&rft_dat=%3Cproquest_cross%3E27672863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27672863&rft_id=info:pmid/&rft_els_id=S0304397500004072&rfr_iscdi=true