Partial words and a theorem of Fine and Wilf revisited
A word of length n over a finite alphabet A is a map from {0,…,n−1} into A. A partial word of length n over A is a partial map from {0,…,n−1} into A. In the latter case, elements of {0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fun...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2002-01, Vol.270 (1), p.401-419 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 1 |
container_start_page | 401 |
container_title | Theoretical computer science |
container_volume | 270 |
creator | Blanchet-Sadri, F. Hegstrom, Robert A. |
description | A word of length
n over a finite alphabet
A is a map from
{0,…,n−1} into
A. A
partial word of length
n over
A is a partial map from
{0,…,n−1} into
A. In the latter case, elements of
{0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fundamental periodicity result on words due to Fine and Wilf to partial words with two or three holes. This study was initiated by Berstel and Boasson for partial words with one hole. Partial words are motivated by molecular biology. |
doi_str_mv | 10.1016/S0304-3975(00)00407-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27672863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397500004072</els_id><sourcerecordid>27672863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-e56853ae8dbbc7934954e79a7d6d2746a70b048b9e1cad1dc4637f8c3cd199873</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEn0UN10qT5OIksrgoLCioeQ5pMMdJt16S74r-3uxWvzmVgeN4X5iHklMIlBSqunoEBz5mW5TnABQAHmRd7ZEKV1HlRaL5PJn_IITlK6QOGKaWYEPFkYx9sk3110afMtj6zWf-OXcRl1tXZPLS4u76Fps4ibkIKPfpjclDbJuHJ756S1_nty-w-XzzePcxuFrnjJe1zLIUqmUXlq8pJzbguOUptpRe-kFxYCRVwVWmkznrqHRdM1sox56nWSrIpORt7V7H7XGPqzTIkh01jW-zWyRRSyEIJNoDlCLrYpRSxNqsYljZ-Gwpma8nsLJmtAgNgdpZMMeSuxxwOX2wCRpNcwNahDxFdb3wX_mn4AZNKbV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27672863</pqid></control><display><type>article</type><title>Partial words and a theorem of Fine and Wilf revisited</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Blanchet-Sadri, F. ; Hegstrom, Robert A.</creator><creatorcontrib>Blanchet-Sadri, F. ; Hegstrom, Robert A.</creatorcontrib><description>A word of length
n over a finite alphabet
A is a map from
{0,…,n−1} into
A. A
partial word of length
n over
A is a partial map from
{0,…,n−1} into
A. In the latter case, elements of
{0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fundamental periodicity result on words due to Fine and Wilf to partial words with two or three holes. This study was initiated by Berstel and Boasson for partial words with one hole. Partial words are motivated by molecular biology.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(00)00407-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Combinatorial problems ; Formal languages ; Words</subject><ispartof>Theoretical computer science, 2002-01, Vol.270 (1), p.401-419</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-e56853ae8dbbc7934954e79a7d6d2746a70b048b9e1cad1dc4637f8c3cd199873</citedby><cites>FETCH-LOGICAL-c451t-e56853ae8dbbc7934954e79a7d6d2746a70b048b9e1cad1dc4637f8c3cd199873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3975(00)00407-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Blanchet-Sadri, F.</creatorcontrib><creatorcontrib>Hegstrom, Robert A.</creatorcontrib><title>Partial words and a theorem of Fine and Wilf revisited</title><title>Theoretical computer science</title><description>A word of length
n over a finite alphabet
A is a map from
{0,…,n−1} into
A. A
partial word of length
n over
A is a partial map from
{0,…,n−1} into
A. In the latter case, elements of
{0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fundamental periodicity result on words due to Fine and Wilf to partial words with two or three holes. This study was initiated by Berstel and Boasson for partial words with one hole. Partial words are motivated by molecular biology.</description><subject>Combinatorial problems</subject><subject>Formal languages</subject><subject>Words</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEn0UN10qT5OIksrgoLCioeQ5pMMdJt16S74r-3uxWvzmVgeN4X5iHklMIlBSqunoEBz5mW5TnABQAHmRd7ZEKV1HlRaL5PJn_IITlK6QOGKaWYEPFkYx9sk3110afMtj6zWf-OXcRl1tXZPLS4u76Fps4ibkIKPfpjclDbJuHJ756S1_nty-w-XzzePcxuFrnjJe1zLIUqmUXlq8pJzbguOUptpRe-kFxYCRVwVWmkznrqHRdM1sox56nWSrIpORt7V7H7XGPqzTIkh01jW-zWyRRSyEIJNoDlCLrYpRSxNqsYljZ-Gwpma8nsLJmtAgNgdpZMMeSuxxwOX2wCRpNcwNahDxFdb3wX_mn4AZNKbV0</recordid><startdate>20020106</startdate><enddate>20020106</enddate><creator>Blanchet-Sadri, F.</creator><creator>Hegstrom, Robert A.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020106</creationdate><title>Partial words and a theorem of Fine and Wilf revisited</title><author>Blanchet-Sadri, F. ; Hegstrom, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-e56853ae8dbbc7934954e79a7d6d2746a70b048b9e1cad1dc4637f8c3cd199873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Combinatorial problems</topic><topic>Formal languages</topic><topic>Words</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanchet-Sadri, F.</creatorcontrib><creatorcontrib>Hegstrom, Robert A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanchet-Sadri, F.</au><au>Hegstrom, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial words and a theorem of Fine and Wilf revisited</atitle><jtitle>Theoretical computer science</jtitle><date>2002-01-06</date><risdate>2002</risdate><volume>270</volume><issue>1</issue><spage>401</spage><epage>419</epage><pages>401-419</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>A word of length
n over a finite alphabet
A is a map from
{0,…,n−1} into
A. A
partial word of length
n over
A is a partial map from
{0,…,n−1} into
A. In the latter case, elements of
{0,…,n−1} without image are called holes (a word is just a partial word without holes). In this paper, we extend a fundamental periodicity result on words due to Fine and Wilf to partial words with two or three holes. This study was initiated by Berstel and Boasson for partial words with one hole. Partial words are motivated by molecular biology.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(00)00407-2</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2002-01, Vol.270 (1), p.401-419 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_27672863 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Combinatorial problems Formal languages Words |
title | Partial words and a theorem of Fine and Wilf revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20words%20and%20a%20theorem%20of%20Fine%20and%20Wilf%20revisited&rft.jtitle=Theoretical%20computer%20science&rft.au=Blanchet-Sadri,%20F.&rft.date=2002-01-06&rft.volume=270&rft.issue=1&rft.spage=401&rft.epage=419&rft.pages=401-419&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/S0304-3975(00)00407-2&rft_dat=%3Cproquest_cross%3E27672863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27672863&rft_id=info:pmid/&rft_els_id=S0304397500004072&rfr_iscdi=true |