The Evolution of Band Topology in Two-Dimensional Weyl Half-Metals
Two-dimensional ferromagnetic Weyl half-metals that are robust against spin–orbital coupling were theoretically proposed recently, in which the nodal points and the nodal loops are protected by specific symmetries. As the symmetry of a ferromagnetic material is highly dependent on the magnetization...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-01, Vol.14 (3), p.825-831 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 831 |
---|---|
container_issue | 3 |
container_start_page | 825 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Ma, Cheng Chen, Xuejiao Jin, Kuijuan Ren, Wenning Zhong, Zhicheng Ge, Chen Guo, Erjia Xu, Xiulai Zhang, Qiulin Wang, Can |
description | Two-dimensional ferromagnetic Weyl half-metals that are robust against spin–orbital coupling were theoretically proposed recently, in which the nodal points and the nodal loops are protected by specific symmetries. As the symmetry of a ferromagnetic material is highly dependent on the magnetization orientation, here we predict a family of two-dimensional ferromagnetic Weyl half-metals, Mn2X3 (X = S, Se, Te) monolayers, to investigate the band topology under different magnetization orientations in the presence of spin–orbital coupling. The Curie temperatures (∼1000 K) were estimated to be much higher than room temperature due to the strong double exchange interaction and the suppression of spin fluctuation for the two-sublayer structure. Taking a Mn2Te3 monolayer as an example, we demonstrated the evolution of the nodal points and the nodal loops in the presence of spin–orbital coupling via manipulating magnetization orientation. Our work provides a family of high temperature two-dimensional ferromagnetic Weyl half-metals for investigating the nontrivial band topology. |
doi_str_mv | 10.1021/acs.jpclett.2c03548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2767171383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767171383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-1ae032723f7fe771649442d8a66b63f8f6dc0402f55e4f96227f020be73d798b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwC5CQR5a0_ortjBQKRSpiCWK0nMSGVE4c4gTUf0-gATEx3Tece590ADjHaI4RwQudh_m2yZ3pujnJEY2ZPABTnDAZCSzjwz_3BJyEsEWIJ0iKYzChnMexjOUULNNXA1fv3vVd6WvoLVzquoCpb7zzLztY1jD98NFNWZk6DIR28NnsHFxrZ6MH02kXTsGRHcKcjTkDT7er9HodbR7v7q-vNpGmLO4irA2iRBBqhTVCYM4SxkghNecZp1ZaXuSIIWLj2DCbcEKERQRlRtBCJDKjM3C5321a_9ab0KmqDLlxTtfG90ERwQUWmEo6oHSP5q0PoTVWNW1Z6XanMFJf8tQgT43y1ChvaF2MD_qsMsVv58fWACz2wHfb9-2gI_w7-QmSPXxS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767171383</pqid></control><display><type>article</type><title>The Evolution of Band Topology in Two-Dimensional Weyl Half-Metals</title><source>American Chemical Society Journals</source><creator>Ma, Cheng ; Chen, Xuejiao ; Jin, Kuijuan ; Ren, Wenning ; Zhong, Zhicheng ; Ge, Chen ; Guo, Erjia ; Xu, Xiulai ; Zhang, Qiulin ; Wang, Can</creator><creatorcontrib>Ma, Cheng ; Chen, Xuejiao ; Jin, Kuijuan ; Ren, Wenning ; Zhong, Zhicheng ; Ge, Chen ; Guo, Erjia ; Xu, Xiulai ; Zhang, Qiulin ; Wang, Can</creatorcontrib><description>Two-dimensional ferromagnetic Weyl half-metals that are robust against spin–orbital coupling were theoretically proposed recently, in which the nodal points and the nodal loops are protected by specific symmetries. As the symmetry of a ferromagnetic material is highly dependent on the magnetization orientation, here we predict a family of two-dimensional ferromagnetic Weyl half-metals, Mn2X3 (X = S, Se, Te) monolayers, to investigate the band topology under different magnetization orientations in the presence of spin–orbital coupling. The Curie temperatures (∼1000 K) were estimated to be much higher than room temperature due to the strong double exchange interaction and the suppression of spin fluctuation for the two-sublayer structure. Taking a Mn2Te3 monolayer as an example, we demonstrated the evolution of the nodal points and the nodal loops in the presence of spin–orbital coupling via manipulating magnetization orientation. Our work provides a family of high temperature two-dimensional ferromagnetic Weyl half-metals for investigating the nontrivial band topology.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c03548</identifier><identifier>PMID: 36655858</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2023-01, Vol.14 (3), p.825-831</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-1ae032723f7fe771649442d8a66b63f8f6dc0402f55e4f96227f020be73d798b3</citedby><cites>FETCH-LOGICAL-a345t-1ae032723f7fe771649442d8a66b63f8f6dc0402f55e4f96227f020be73d798b3</cites><orcidid>0000-0003-1507-4814 ; 0000-0002-0047-4375 ; 0000-0002-4404-7957 ; 0000-0002-8093-940X ; 0000-0001-8231-406X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c03548$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c03548$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36655858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Cheng</creatorcontrib><creatorcontrib>Chen, Xuejiao</creatorcontrib><creatorcontrib>Jin, Kuijuan</creatorcontrib><creatorcontrib>Ren, Wenning</creatorcontrib><creatorcontrib>Zhong, Zhicheng</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><creatorcontrib>Guo, Erjia</creatorcontrib><creatorcontrib>Xu, Xiulai</creatorcontrib><creatorcontrib>Zhang, Qiulin</creatorcontrib><creatorcontrib>Wang, Can</creatorcontrib><title>The Evolution of Band Topology in Two-Dimensional Weyl Half-Metals</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Two-dimensional ferromagnetic Weyl half-metals that are robust against spin–orbital coupling were theoretically proposed recently, in which the nodal points and the nodal loops are protected by specific symmetries. As the symmetry of a ferromagnetic material is highly dependent on the magnetization orientation, here we predict a family of two-dimensional ferromagnetic Weyl half-metals, Mn2X3 (X = S, Se, Te) monolayers, to investigate the band topology under different magnetization orientations in the presence of spin–orbital coupling. The Curie temperatures (∼1000 K) were estimated to be much higher than room temperature due to the strong double exchange interaction and the suppression of spin fluctuation for the two-sublayer structure. Taking a Mn2Te3 monolayer as an example, we demonstrated the evolution of the nodal points and the nodal loops in the presence of spin–orbital coupling via manipulating magnetization orientation. Our work provides a family of high temperature two-dimensional ferromagnetic Weyl half-metals for investigating the nontrivial band topology.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EoqXwC5CQR5a0_ortjBQKRSpiCWK0nMSGVE4c4gTUf0-gATEx3Tece590ADjHaI4RwQudh_m2yZ3pujnJEY2ZPABTnDAZCSzjwz_3BJyEsEWIJ0iKYzChnMexjOUULNNXA1fv3vVd6WvoLVzquoCpb7zzLztY1jD98NFNWZk6DIR28NnsHFxrZ6MH02kXTsGRHcKcjTkDT7er9HodbR7v7q-vNpGmLO4irA2iRBBqhTVCYM4SxkghNecZp1ZaXuSIIWLj2DCbcEKERQRlRtBCJDKjM3C5321a_9ab0KmqDLlxTtfG90ERwQUWmEo6oHSP5q0PoTVWNW1Z6XanMFJf8tQgT43y1ChvaF2MD_qsMsVv58fWACz2wHfb9-2gI_w7-QmSPXxS</recordid><startdate>20230126</startdate><enddate>20230126</enddate><creator>Ma, Cheng</creator><creator>Chen, Xuejiao</creator><creator>Jin, Kuijuan</creator><creator>Ren, Wenning</creator><creator>Zhong, Zhicheng</creator><creator>Ge, Chen</creator><creator>Guo, Erjia</creator><creator>Xu, Xiulai</creator><creator>Zhang, Qiulin</creator><creator>Wang, Can</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1507-4814</orcidid><orcidid>https://orcid.org/0000-0002-0047-4375</orcidid><orcidid>https://orcid.org/0000-0002-4404-7957</orcidid><orcidid>https://orcid.org/0000-0002-8093-940X</orcidid><orcidid>https://orcid.org/0000-0001-8231-406X</orcidid></search><sort><creationdate>20230126</creationdate><title>The Evolution of Band Topology in Two-Dimensional Weyl Half-Metals</title><author>Ma, Cheng ; Chen, Xuejiao ; Jin, Kuijuan ; Ren, Wenning ; Zhong, Zhicheng ; Ge, Chen ; Guo, Erjia ; Xu, Xiulai ; Zhang, Qiulin ; Wang, Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-1ae032723f7fe771649442d8a66b63f8f6dc0402f55e4f96227f020be73d798b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Cheng</creatorcontrib><creatorcontrib>Chen, Xuejiao</creatorcontrib><creatorcontrib>Jin, Kuijuan</creatorcontrib><creatorcontrib>Ren, Wenning</creatorcontrib><creatorcontrib>Zhong, Zhicheng</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><creatorcontrib>Guo, Erjia</creatorcontrib><creatorcontrib>Xu, Xiulai</creatorcontrib><creatorcontrib>Zhang, Qiulin</creatorcontrib><creatorcontrib>Wang, Can</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Cheng</au><au>Chen, Xuejiao</au><au>Jin, Kuijuan</au><au>Ren, Wenning</au><au>Zhong, Zhicheng</au><au>Ge, Chen</au><au>Guo, Erjia</au><au>Xu, Xiulai</au><au>Zhang, Qiulin</au><au>Wang, Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Evolution of Band Topology in Two-Dimensional Weyl Half-Metals</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-01-26</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>825</spage><epage>831</epage><pages>825-831</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Two-dimensional ferromagnetic Weyl half-metals that are robust against spin–orbital coupling were theoretically proposed recently, in which the nodal points and the nodal loops are protected by specific symmetries. As the symmetry of a ferromagnetic material is highly dependent on the magnetization orientation, here we predict a family of two-dimensional ferromagnetic Weyl half-metals, Mn2X3 (X = S, Se, Te) monolayers, to investigate the band topology under different magnetization orientations in the presence of spin–orbital coupling. The Curie temperatures (∼1000 K) were estimated to be much higher than room temperature due to the strong double exchange interaction and the suppression of spin fluctuation for the two-sublayer structure. Taking a Mn2Te3 monolayer as an example, we demonstrated the evolution of the nodal points and the nodal loops in the presence of spin–orbital coupling via manipulating magnetization orientation. Our work provides a family of high temperature two-dimensional ferromagnetic Weyl half-metals for investigating the nontrivial band topology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36655858</pmid><doi>10.1021/acs.jpclett.2c03548</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1507-4814</orcidid><orcidid>https://orcid.org/0000-0002-0047-4375</orcidid><orcidid>https://orcid.org/0000-0002-4404-7957</orcidid><orcidid>https://orcid.org/0000-0002-8093-940X</orcidid><orcidid>https://orcid.org/0000-0001-8231-406X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-01, Vol.14 (3), p.825-831 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2767171383 |
source | American Chemical Society Journals |
subjects | Physical Insights into Materials and Molecular Properties |
title | The Evolution of Band Topology in Two-Dimensional Weyl Half-Metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Evolution%20of%20Band%20Topology%20in%20Two-Dimensional%20Weyl%20Half-Metals&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Ma,%20Cheng&rft.date=2023-01-26&rft.volume=14&rft.issue=3&rft.spage=825&rft.epage=831&rft.pages=825-831&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c03548&rft_dat=%3Cproquest_cross%3E2767171383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767171383&rft_id=info:pmid/36655858&rfr_iscdi=true |